Friday 11 August 2017

Mudança Média Filtro Fpga


Receptor GPS caseiro Foto acima é o front-end, o primeiro mixer e o amplificador IF de um receptor de GPS experimental. O SMA mais à esquerda está conectado a uma antena comercial com filtro integral LNA e SAW. Um primeiro oscilador local sintetizado conduz o SMA inferior. Os cabeçalhos do pino à direita são entrada de energia e saída IF. O último está conectado a um FPGA Xilinx que não só executa DSP, mas também hospeda um sintetizador de frequência de fração N. Mais sobre isso mais tarde. Fui motivado para projetar este receptor depois de ler o trabalho 1 do Matjax017E Vidmar, S53MV, que desenvolveu um receptor de GPS a partir do zero, usando principalmente componentes discretos, há mais de 20 anos. Seu uso de DSP seguindo um ADC de IF e 1 bit de difícil limitação me interessou. O receptor descrito aqui funciona com o mesmo princípio. Seu ADC de 1 bit é o IC de 6 pinos perto dos cabeçalhos dos pinos, um comparador de saída LVDS. Oculto sob o ruído, mas não obliterado no mush silenciado bi-level que emerge são sinais de todos os satélites em vista. Todos os satélites GPS transmitem na mesma frequência, 1575,42 MHz, utilizando o espectro de propagação de sequência direta (DSSS). O transportador L1 é distribuído em uma largura de banda de 2 MHz e sua força na superfície da Terra é de -130 dBm. O poder de ruído térmico na mesma largura de banda é de -111 dBm, de modo que um sinal de GPS na antena de recepção é de 20 dB abaixo do piso de ruído. Que qualquer um dos sinais presentes, sobrepostos um ao outro e enterrado em ruído, são recuperáveis ​​após a quantia bi-nível parece contra-intuitivo, escrevi uma simulação para me convencer. O GPS baseia-se nas propriedades de correlação das seqüências pseudo-aleatórias chamadas Gold Codes para separar os sinais do ruído e entre si. Todo satélite transmite uma seqüência única. Todos os sinais não correlacionados são o ruído, incluindo os de outros satélites e erros de quantificação de limitadores duros. A mistura com o mesmo código na fase correta difunde o sinal desejado e difunde tudo o resto. A filtragem de banda estreita, em seguida, remove o ruído de banda larga sem afetar o sinal desejado (mais uma vez). Hard-limiting (1-bit ADC) degrada SNR em menos de 3 dB, um preço que vale a pena pagar para evitar hardware AGC. Atualização de maio de 2013 Este é agora um receptor GPS portátil de 12 canais, portátil e com bateria, com software chave na mão, que adquire e rastreia satélites e recalcula continuamente sua posição, sem intervenção do usuário. O sistema completo (abaixo, à esquerda) compreende: display LCD 16x2, computador Raspberry Pi Model A, duas placas de circuito impresso personalizadas, antena de patch comercial e bateria Li-Ion. O consumo total de corrente do sistema é de 0.4A para uma duração de bateria de 5 horas. O Raspberry Pi é alimentado através do cabo de fita que liga seu cabeçalho GPIO à placa Frac7 FPGA e não requer outras conexões. Atualmente, o Pi está executando o Raspbian Linux. Uma distro menor diminuirá o tempo até a primeira correção. Após a inicialização a partir do cartão SD, o software do aplicativo GPS é iniciado automaticamente. À saída, fornece um meio para desligar adequadamente o Pi antes de desligar. O desenvolvimento de software do Pi foi feito sem head-less via SSH e FTP através de um dongle USB Wi-Fi. O código fonte ea documentação podem ser encontradas na parte inferior desta página. Ambos os PCB personalizados são placas de PTH de 2 camadas simples com planos de solo contínuos na parte inferior. Indo no sentido horário em torno do Xilinx Spartan 3 na placa Frac7 FPGA: das 12 horas às 3 horas, o filtro de loop, o VCO, o divisor de potência e o pré-gravador do sintetizador de freqüência de microondas em baixo, são o joystick e o conector JTAG e, às 6 horas, um Cabeçote para o cabo de fita Raspberry Pi. O lado esquerdo é o conector LCD. Perto a esquerda é um oscilador de cristal com controle de tensão compensado por temperatura (TCVCXO) que fornece uma freqüência de referência estável, vital para a recepção de GPS. O TCVCXO é bom, mas não é suficiente para o padrão GPS ao operar sem encaixes em locais ventosos. Soprar sobre ele desloca o oscilador de cristal de 10,000000 MHz em cerca de 1 parte em 10 milhões ou 1 Hz, o que é ampliado 150 vezes pela PLL do sintetizador. Isso é suficiente para desbloquear momentaneamente os loops de rastreamento por satélite, se feito de repente. O dispositivo também é ligeiramente sensível a infravermelhos, e. De lâmpadas halógenas e telecomandos de TV Quando publicado pela primeira vez em 2011, este foi um receptor de quatro canais, o que significa que só pode rastrear quatro satélites simultaneamente. Pelo menos quatro são necessários para resolver a posição do usuário e o viés do relógio do receptor, mas é possível uma maior precisão com mais. Naquela versão original, quatro instâncias idênticas do módulo rastreador preenchiam o FPGA. Mas a maioria dos flops foram registrados apenas uma vez por milissegundo. Agora, uma CPU de núcleo suave personalizada dentro do FPGA serializa o processamento e apenas 50 do tecido FPGA são necessários para um receptor de 8 canais ou 67 para 12 canais. O número de canais é um parâmetro na fonte e pode ir mais alto. A precisão de posicionamento é melhor quando a antena pode ver 360 ° de céu e receber sinais de todas as direções. Geralmente, quanto mais satélites estiverem em vista, melhor. Dois ou mais satélites no mesmo rolamento podem levar ao que é chamado de geometria ruim. A melhor solução até agora foi mais de 1 metro em uma localização muito aberta usando 12 satélites, mas a precisão é tipicamente maismn5 metros em locais mais pobres com menos satélites. Atualização de setembro de 2014 O código-fonte deste projeto foi re-lançado sob a GNU General Public License (GPL). Processamento de arquitetura é dividido entre FPGA e Pi por complexidade e urgência. O Pi lida com levantamentos pesados ​​intensivos em matemática em seu próprio ritmo. O FPGA sintetiza o primeiro oscilador local, presta serviços de eventos de alta prioridade em tempo real e rastreia os satélites de forma autônoma. O Pi controla o FPGA através de uma interface SPI. Convenientemente, o mesmo SPI é usado para carregar o bitstream de configuração FPGA e o código executável binário para a CPU incorporada. O FPGA também pode ser controlado através de um cabo USB JTAG Xilinx Platform a partir de um PC com Windows e detecta automaticamente qual interface está em uso. As freqüências L1 são convertidas em uma primeira IF de 22,6 MHz, misturando com um oscilador local de 1552,82 MHz na placa frontal GPS3. Todo o processamento subseqüente de sinal IF e baseband é feito digitalmente no FPGA. Dois controladores de proporcionalidade integral (PI) por satélite, operador de faixa e fase de código. Os dados NAV transmitidos pelos satélites são coletados na memória FPGA. Isso é carregado para o Pi, que verifica a paridade e extrai as efemérides do fluxo de bits. Quando todos os parâmetros orbitais necessários são coletados, um instantâneo é tirado de certos contadores FPGA internos, a partir do qual o tempo de transmissão é calculado para a precisão de 15ns. Grande parte do sintetizador de 1552,82 MHz é implementado no FPGA. Pode-se esperar problemas de jitter, co-hospedar um detector de fase com outra lógica, mas funciona. A pureza espectral de saída do sintetizador é excelente, mesmo que o núcleo FPGA esteja se afastando furiosamente e nem todos em freqüências harmonicamente relacionadas. Essa abordagem foi tomada porque um quadro semelhante ao Frac7 já existia de um projeto de sintetizador anterior. Adicionar um front-end foi o caminho mais curto para um protótipo de receptor. Mas essa primeira versão não era portátil: tinha requisitos de energia inconvenientes e nenhum padrão de frequência a bordo. Processamento de sinal até e incluindo o limitador rígido: O comparador LMH7220 possui uma tensão de entrada máxima de 9.5mV. O ruído térmico amplificado deve confortavelmente exceder isso para mantê-lo alternando. Os sinais de GPS fracos apenas influenciam o comparador perto de cruzamentos de zero. Eles são amostrados pelo ruído. Para estimar o nível de ruído na entrada do comparador, tabulamos ganhos, perdas de inserção e números de ruído: o ruído na banda na saída do mixer é -1740.828-1.5-3.920- 610log10 (2.5e6) -73 dBm ou 52microV RMS. O misturador é resistivamente encerrado em 50 ohms e os estágios subseqüentemente funcionam com impedância mais alta. A faixa discreta IF possui um ganho de tensão global de 1000, de modo que o nível de entrada do comparador é de 52MV RMS. O LMH7220 adiciona 59 dB de ganho, totalizando 119 dB para todo o IF. A implantação de tanto ganho em uma freqüência foi um risco. Para minimizá-lo, foram utilizados circuitos equilibrados sobre um plano de solo sólido e o par torcido selecionado leva a saída para o FPGA. A motivação foi a simplicidade, evitando uma segunda conversão. Na prática, o circuito é estável, de modo que o jogo foi liquidado. O desacoplador ativo Q1 fornece 5V para o LNA remoto. O amplificador MMIC U2 oferece um ganho de 20 dB (não em IF) e garante uma figura baixa do ruído do sistema, mesmo que sejam utilizados longos cabos de antena. L1 e L2 são bobinados de microondas com freqüência muito auto-ressonante, montados perpendiculares uns aos outros e desobstruídos do plano de terra. Vento 14 voltas, ar-cored, 1mm de diâmetro interno de 7cm de comprimento de 32swg fio de cobre esmaltado. Verificado com o gerador de rastreamento em um Marconi 2383 SA, estes foram bons para 4 GHz. O Mini-Circuits MBA-15L DBM foi escolhido por sua baixa perda de conversão de 6 dB a 1,5 GHz e baixo requisito de unidade de 4 dBm LO. R9 termina a porta IF. Três estágios do amplificador IF totalmente diferenciais seguem o misturador. Os circuitos sintonizados paralelos Low-Q enfiados entre colecionadores definem a largura de banda de -3 dB em torno de 2,5 MHz e evitam a acumulação de deslocamentos DC. L4, L5 e L6 são bobinas Toko 7mm blindadas. O BFS17 foi escolhido por seu alto (mas não muito alto) 1 GHz f T. I e é 2mA para menor ruído e razoável betar e. A primeira IF de 22,6 MHz é convertida digitalmente para 2,6 MHz por sub-amostragem a 10 MHz no FPGA. 2,6 MHz fica perto do centro da banda de Nyquist de 5 MHz. É melhor evitar o centro exato, por razões que serão explicadas mais tarde. Várias outras primeiras freqüências IF são possíveis: 27,5 MHz, que produz inversão de espectro na 2ª IF, também foi testado com sucesso. Há um trade-off entre os problemas de imagem no menor e o BFS17 disponível em maior freqüência. A detecção de sinal implica a resolução de três incógnitas: o que os satélites estão à vista, suas mudanças de Doppler e fases de código. Uma busca seqüencial deste espaço tridimensional a partir do chamado arranque a frio pode levar muitos minutos. Um início quente usando dados de almanaque para prever posições e velocidades ainda requer uma pesquisa de código. Todas as fases de código 1023 devem ser testadas para encontrar o pico de correlação máximo. O cálculo de integrais de correlação 1023 no domínio do tempo é muito caro e redundante. Este receptor GPS usa um algoritmo baseado em FFT que testa todas as fases do código em paralelo. Do frio, leva 2,5 segundos em um Pentium de 1,7 GHz para medir a força do sinal, a mudança de Doppler e a fase do código de todos os satélites visíveis. O Raspberry Pi é um pouco mais lento. Com a over-bar denotando a conjugação, a função de correlação cruzada y (Tau) do sinal complexo s (t) e o código c (t) deslocado pelo offset Tau é: O teorema de correlação afirma que a transformada de Fourier de uma integral de correlação é igual a O produto do conjugado complexo da transformada de Fourier da primeira função e a transformada de Fourier da segunda função: FFT (y) CONJUGATE (FFT (s)) FFT (c) A correlação é realizada na banda base. O código de CA de 1.023 Mbps é 1023 chips ou 1ms de comprimento. O comprimento FFT avançado deve ser um múltiplo disso. A amostragem a 10 MHz por 4 ms resulta em um tamanho de bandeja FFT de 250 Hz. 41 turnos Doppler devem ser testados girando os dados do domínio de freqüência, um compartimento por vez, até plusmn20 caixas maismn5 KHz. A rotação pode ser aplicada a qualquer das funções. O IF IF de 22,6 MHz do ADC de 1 bit é subestimado por um relógio de 10 MHz no FPGA, convertendo-o digitalmente para um 2º IF de 2,6 MHz. No software, o II IF é convertido para baixo em banda base (IQ) complexa usando osciladores locais em quadratura. Para sinais de dois níveis, os misturadores são simples portas XOR. Embora não seja mostrado acima, as amostras são temporariamente armazenadas em memória FPGA. O Pi não pode aceitá-los em 10 Mbps. 1,023 Mbps e 2,6 MHz são gerados por acumuladores de fase de oscilador com controle numérico (NCO). Essas freqüências são bastante amplas em comparação com a taxa de amostragem e não são sub-harmônicas exatas disso. Conseqüentemente, os NCOs têm esporas fracionárias. O número de amostras por chip de código entre 9 e 10. Felizmente, os receptores DSSS são tolerantes a interferências de banda estreita, externas ou auto-geradas. A banda de base complexa é transformada no domínio da freqüência por uma FFT dianteira que só precisa ser computada uma vez. Uma FFT de cada código de CA de satélites é pré-computada. O tempo de processamento é dominado pelo loop interno mais que executa deslocamento, conjugação, multiplicação complexa e uma inversa-FFT por teste satélite-Doppler. O GPU de framboesa Pis Videocore poderia ser alavancado para acelerar as coisas. À taxa de amostragem de 10 MHz, a fase do código é resolvida para os 100ns mais próximos. A saída CCF típica é ilustrada abaixo: o cálculo do pico para o poder médio sobre esses dados fornece uma boa estimativa de SNR e é usado para encontrar os sinais mais fortes. O seguinte foi recebido às 20:14 GMT em 4 de março de 2011, em Cambridge, Reino Unido, com a antena em uma borda externa da janela de norte: de latitudes do norte, mais satélites de GPS geralmente serão encontrados no céu do sul, ou seja, para o equador. Tomar amostras mais longas aumenta SNR, revelando sinais mais fracos, mas o cancelamento ocorre quando a captura abrange as transições de dados NAV. O comprimento FFT avançado é um número inteiro de milissegundos no entanto, a FFT inversa pode ser encurtada, simplesmente jogando dados em compartimentos de freqüência mais alta. O SNR é preservado, mas a fase do código não está tão resolvida. No entanto, uma boa estimativa da posição do pico é obtida pela média ponderada das duas caixas adjacentes mais fortes e os testes fora do ar sugerem que isso poderia funcionar até mesmo para comprimentos FFT inversos bastante curtos. Tendo detectado um sinal, o próximo passo é travar, rastreá-lo e desmodular os dados NAV de 50 pb. Isso requer dois laços de fase bloqueados inter-dependentes (PLLs) para rastrear código e fase de suporte. Esses PLLs devem operar em tempo real e são implementados como funções DSP no FPGA. O software Pi tem um papel de supervisão: decidir quais satélites rastrear, monitorar o status de bloqueio e processar os dados de NAV recebidos. Os laços de rastreamento são bons em manter o bloqueio, porque eles possuem uma largura de banda muito estreita, no entanto, essa mesma característica os torna fracos na aquisição de bloqueio sem ajuda. Eles não podem ver além da largura de banda do loop para capturar qualquer coisa mais longe. As fases e frequências iniciais devem ser predefinidas para a fase do código medido e a mudança Doppler do satélite alvo. Isso é orquestrado sob controle Pi. Os laços devem estar bloqueados desde o início e permanecerem assim. A fase do código é medida em relação à amostra FFT. O código NCO no FPGA é reiniciado no início da amostragem e acumula a fase em um 1.023 MHz fixo. É mais tarde alinhado com o código recebido parando brevemente o acumulador de fase. O deslocamento do Doppler no transportador 1575,42 MHz é maismn5 KHz ou plusmn3 ppm. Também afeta a taxa de código de 1,023 Mbps por másmn3 chips por segundo. O comprimento da pausa é ajustado para o creep do código no tempo desde que a amostra foi retirada. Felizmente, o Doppler de código é proporcional ao Doppler de suporte para o qual temos uma boa estimativa. Software de hardware dividido No diagrama abaixo, codificação de cores mostra como a implementação do DSP de rastreamento agora está dividida entre hardware e software. Anteriormente, tudo isso foi feito em hardware, com instâncias paralelas idênticas repetidas para cada canal, tornando o uso ineficiente de recursos FPGA. Agora, o processamento mais lento de 1 KHz é feito por software e duas vezes mais canais podem ser acomodados na metade do imóvel FPGA. Os seis acumuladores integrados e de despejo (Sigma) são bloqueados em um registro de deslocamento na época do código. Um sinalizador de solicitação de serviço sinaliza a CPU, que lê o bit de dados em série. Com 8 canais ativos, 8 de tempo de CPU são gastos executando a instrução oprdBit. Mas há muito tempo e o serial IO usa tecido FPGA economicamente. Luxos como o registro RSSI e IQ (por exemplo, para gráficos de dispersão) agora podem ser oferecidos. As funções de transferência de filtro de loop F (z) engolir 2 da largura de banda da CPU por canal ativo. Estes são controladores padrão de proporcionalidade integral (PI): a precisão de 64 bits é usada e os coeficientes de ganho KI e KP, embora restritos a potências de 2, são ajustáveis ​​dinamicamente. Cada canal que precisa esperar a sua vez, as atualizações de taxa de NCO podem ser atrasadas por dezenas ou centenas de microssegundos após uma época de código, mas isso introduz um desvio de fase insignificante em freqüências onde a margem de fase é determinada. Traços finos são de 1 bit, representando teoricamente maismn1. O transportador de 2,6 MHz é primeiro desdobrado por mistura com códigos precoce, tardio e pontual. Os produtos de base-base do complexo I e Q do segundo grau de misturadores de portas XOR são somados em mais de 10000 amostras ou 1 ms. Esta filtragem de passagem baixa reduz drasticamente a largura de banda de ruído e, assim, aumenta o SNR. O downsampling para 1 KHz requer caminhos de dados avançados mais amplos no domínio do software. A fase de código é rastreada usando um loop de bloqueio de atraso convencional ou um portão atrasado. O poder nos canais precoce e tardio é calculado usando P I 2 Q 2 que é insensível à fase. Os códigos precoce e tardio são um chip separado, ou seja, frag12 chip de frente e atrás de pontual. Este diagrama ajuda a obter o erro senso correto: A Costas Loop é usado para rastreamento de operadoras e recuperação de dados NAV no canal pontual. Os dados de NAV, m, são retirados do bit de sinal do I-braço com incerteza de fase de 180 °. K é amplitude de sinal recebida e theta é a diferença de fase entre o portador recebido (sem modulação) e o NCO local. K varia de cerca de 400 para os sinais recuperáveis ​​mais fracos até mais de 2000 para os mais fortes. Observe como o termo de erro alimentado de volta ao controlador de fábrica F (z) no Costas Loop é proporcional à potência de sinal recebida ksup2. A inclinação de rastreamento e, portanto, o ganho de loop, também variam com a potência do sinal no loop de código. Abaixo está um gráfico Bode do ganho de loop aberto para o Loop Costas em k500: a largura de banda Costas Loop é de cerca de 20 Hz, o que é ótimo para o rastreamento do operador. A largura de banda do loop de código é de 1 Hz. O poder de ruído em tais largura de banda é pequeno e os loops podem rastrear sinais muito fracos. O kI e o kP acima funcionam para a maioria dos sinais, mas precisam deixar cair um entalhe para o mais forte. Scilab prevê, e as parcelas de dispersão confirmam, o início da instabilidade no kge1500. Os erros de paridade não ocorrem, a menos que as amostras se desviem para a metade oposta do plano IQ. (I) Instabilidade no kge1500 Os anteriores são 2 quadros consecutivos de 5 subtramas cada. As subestruturas são de 300 bits e leva 6 segundos para transmitir. A coluna 1 é o preâmbulo 10001011. Isso aparece no início de cada subtrama, mas pode ocorrer em qualquer lugar nos dados. O contador de 17 bits na coluna 5 é o horário da semana (TOW) e é reiniciado para zero à meia-noite de domingo. O contador de 3 bits na coluna 7 é o subtrama ID 1 a 5. Subframes 4 e 5 são subconfigurados em 25 páginas cada e uma mensagem de dados completa compreendendo 25 quadros completos leva 12,5 minutos para transmitir. Estou usando apenas dados nas subtramas 1, 2 e 3 no presente. Resolvendo para a posição do usuário Todo satélite GPS transmite sua posição e o tempo. Subtrair o tempo enviado do tempo recebido e multiplicar pela velocidade da luz é como um receptor mede distância entre si e os satélites. Ao fazê-lo, três satélites renderiam três equações simultâneas em três incógnitas (posição do usuário: x, y, z) se o tempo exato estava disponível. Na prática, os relógios do receptor não são precisos o suficiente, o tempo exato é um quarto desconhecido, são necessários quatro satélites e quatro equações simultâneas devem ser resolvidas: um método iterativo é usado porque as equações são não-lineares. Usando o centro da terra (0, 0, 0) e o tempo aproximado como ponto de partida, o algoritmo converge em apenas cinco ou seis iterações. A solução é encontrada mesmo se o erro do relógio do usuário for grande. Os satélites carregam relógios atômicos, mas esses também têm erros e os coeficientes de correção no subtrama 1 devem ser aplicados ao tempo de transmissão. Ajustes típicos podem ser centenas de microssegundos. O tempo de transmissão não corrigido é formado por dimensionamento e adição de vários contadores. Tempo de semana (TOW) em segundos desde a meia-noite de domingo é enviado cada subtrama. Bordas de dados marcam intervalos de 20ms dentro de subtramas de 300 bits. O código se repete 20 vezes por bit de dados. O comprimento do código é 1023 chips e a taxa de chip é 1.023 Mbps. Finalmente, os 6 bits mais significativos da fase de NCO do código são anexados, o tempo de transmissão da transmissão para mais de 15ns. As posições dos satélites no tempo de transmissão corrigido são calculadas usando efemérides nas subtramas 2 e 3. A posição orbital em um ponto de referência (tempo de efemérides) é fornecida juntamente com parâmetros que permitem que (x, y, z) sejam calculados até alguns Horas antes ou depois. Ephemerides são atualizados regularmente e os satélites apenas transmitem os seus próprios. As órbitas de longo prazo de toda a constelação podem ser preditas de forma menos precisa usando os dados do Almanac nas subtramas 4 e 5 no entanto, isso não é essencial se uma busca rápida baseada em FFT for usada. As soluções são calculadas em coordenadas centradas na terra, terrestre (ECEF). A localização do usuário é convertida em latitude, longitude e altitude com uma correção para a excentricidade da Terra, que se projeta no equador. Os diagramas de dispersão abaixo ilustram a repetibilidade, o benefício da média e o efeito de escolhas de satélite pobres. Os quadrados da grade são 0.001deg em cada lado. Os pontos azuis marcam 1000 reparos. Os triângulos amarelos marcam os centros de gravidade: (i) saliência de janela virada para o norte (ii) antena no telhado (iii) borda da janela virada para o leste. O agrupamento apertado (ii) foi obtido usando satélites em quatro quartos diferentes do céu. Somente a antena do telhado tinha uma visão clara em todas as direções. Mas as correções boas foram obtidas pela média, mesmo quando a metade do céu estava obscurecida. As correções do telhado também exibem propagação como (i) e (iii) se os satélites errados forem escolhidos. As soluções acima foram geradas sem compensar os atrasos de propagação ionosférica utilizando parâmetros na página 18 do subtrama 4, que deve ser aplicado porque este é um receptor de freqüência única. A refração ionosférica aumenta o comprimento do caminho entre usuários e satélites. Em abril de 2012, reparei um erro que causou erros significativos em soluções de posição de usuário. Originalmente, ao não transformar as posições dos satélites das coordenadas terrestres-centradas (ECEF) para a terra inercial (ECI), ignorei a rotação da Terra durante os 60 a 80 ms que os sinais estavam em vôo. Agora estou vendo as precisões da solução posicional de plusmn 5 metros após a média, mesmo com visibilidade limitada do satélite. Criei um apêndice que mostra como a solução iterativa é desenvolvida, a partir de uma equação de alcance geométrico, que é linearizada usando uma expansão da série Taylor e resolvida por métodos de matriz, para o caso especial de quatro satélites ou o caso geral de mais, com a Opção de usar mínimos quadrados ponderados para controlar a influência de determinados satélites. Você encontrará este e o código-fonte da solução C nos links na parte inferior da página. Agradeço a Dan Doberstein por me enviar um rascunho inicial de seu livro de GPS 2 que me ajudou a entender o algoritmo da solução. A especificação oficial da interface GPS do governo dos EUA 3 é uma referência essencial. Monitor de sinal O arranjo de circuito acima, principalmente implementado em FPGA, se desdobra usando o IF do 1 bit e o código pontual, deixando a modulação de dados de 50 pb. Um pequeno entalhe devido à supressão do operador BPSK só pode ser visto: esses espectros mostram a mesma transmissão de espalhamento em diferentes extensões e largura de banda de resolução (RBW). A mudança de Doppler foi de -1,2 KHz. O piso de ruído é o ruído térmico da antena amplificado e filtrado pela tira IF. A largura de banda de -3 dB exibe cerca de 3 MHz, ligeiramente maior do que o planejado. O transportador espalhado é 5 dB acima do ruído a 30 KHz RBW e 25 dB acima em 300 Hz RBW. A intensidade do sinal recebido na antena pode ser estimada como -174110log10 (30e3) 5 -123 dBm. Ainda me surpreende o quão bem a informação do domínio da frequência é preservada através de um limitante. O transmissor LVDS tem uma corrente de saída constante de 1mW em 100 ohms. O poder máximo observado na SA não pode exceder 0 dBm. Aqui, vemos esta potência disponível espalhada por uma variedade de freqüências. A densidade espectral de potência integrada de banda larga deve ser o primeiro oscilador local. Eu tenho construído sintetizadores experimentais de fração-N usando lógica programável de propósito geral por vários anos: Xilinx Spartan 3 FPGA Frac7 foi construído para este propósito, mas eu não tinha idéia Frac5 seria usado em um GPS Receptor quando eu originalmente o criei. A foto abaixo mostra como a saída VCO ROS-1455 em Frac5 foi dividida de forma resistiva entre a SMA de saída e um pré-escalador Hittite HMC363 divide-por-8. A saída do divisor de 200 MHz é encaminhada (diferencialmente) para o FPGA que a fase o bloqueia para uma referência mestre usando os métodos documentados em meus projetos anteriores. O circuito de microondas no Frac7 é semelhante, mas usa um divisor 3DB Mini-Circuits. Alta estabilidade e baixo ruído de fase são alcançados, como pode ser visto nos espectros de saída de VCO mostrados abaixo. Quando o Frac5 foi originalmente desenvolvido, como um sintetizador de freqüência dedicado, o controle simultâneo de frequências não harmonicamente relacionadas foi evitado para minimizar os estímulos de intermodulação. O FPGA era estático quando os pulsos de relógio que a saída do detector de fase alternada cruzavam o tecido. Nenhum desses luxo é prático quando o FPGA está hospedando um receptor de GPS no entanto, felizmente, a saída do oscilador local é suficientemente boa: os analisadores de espectro Marconi 2383 50 MHz STD OUTPUT foram utilizados como fonte de referência mestre para Frac5 e todos os relógios internos do receptor GPS. Os receptores de GPS precisam de precisão melhor do que 1 ppm (partes por milhão) para medir movimentos doppler Plusmn5 KHz no transportador L1 de 1575,42 MHz. Qualquer incerteza de frequência exigiria um alcance de pesquisa mais amplo. CPU incorporada O meu receptor GPS original só pode rastrear 4 satélites. O tecido disponível não foi usado de forma eficiente e o FPGA estava cheio. A lógica idêntica foi replicada para cada canal e apenas habilitada para clock na época do código de 1 KHz. As taxas de atualização do GPS são bastante inviáveis ​​e a maior parte do processamento paralelo pode ser feito de forma seqüencial. A incorporação de uma CPU para esta tarefa aumentou o número de canais e o espaço livre no FPGA. Esta CPU executa diretamente as primitivas FORTH como instruções nativas. Visitantes da minha marca 1 FORTH A página de computador já estará ciente do meu interesse no idioma. FORTH não é mainstream e seu uso aqui pode ser uma barreira esotérica no entanto, não pude resistir a fazer outra CPU FORTH, desta vez no FPGA, depois de ver o excelente projeto J1, que foi uma inspiração. FORTH é uma linguagem baseada em pilha, o que basicamente significa que a CPU possui pilhas em vez de registros de propósito geral. A Wikipedia tem uma boa visão geral. Recursos de FPGA: 360 fatias 2 BRAMs Execução de instrução de ciclo único Arquitetura de pilha dupla semelhante a FORTH Pilhas de 32 bits e caminhos de dados ALU Operações de dupla precisão de 64 bits Aumento de hardware 2k byte (expansível para 4k bytes) Código e RAM RAM de dados Macro Desenvolvimento do código da montadora Memória e IO Dois BRAMs são usados: um para memória principal, o outro para pilhas. O RAM do bloco Xilinx é dual portado, permitindo que uma instância hospede dados e pilhas de retorno. Cada ponteiro de pilha varia em mais da metade da matriz. A porta dupla da memória principal permite o acesso a dados simultaneamente com a busca de instruções. Uma porta de memória é endereçada pelo contador do programa, o outro por T, o topo da pilha. Os escritos na porta dirigida pelo PC também são usados ​​para download de código, o contador de programas fornece endereços de incremento. Código e dados compartilham a memória principal, que é organizada como 1024 (expandível para 2048) palavras de 16 bits. Os acessos de memória podem ser de 16, 32 ou 64 bits, alinhados com palavras. Todas as instruções são de 16 bits. O código total mais o tamanho de dados do aplicativo GPS é inferior a 750 palavras, apesar de todos os loops serem desenrolados. O IO não é mapeado de memória, ocupando seu próprio espaço de seleção de 36 bits (12 em 12 de 12 eventos). A codificação rápida é usada para simplificar a decodificação selecionada. As operações de IO são várias vezes de série, 16 ou 32 bits paralelas. Dados em série mudam 1 bit por ciclo de relógio. Os eventos são usados ​​principalmente como estroboscópios de hardware e diferem das escritas por não aparecerem a pilha. Formato de instrução 24 instruções de um possível 32 estão atualmente alocadas no espaço do opcode h80XX-h9FXX. Estas são operações de ALU de pilotagem de zero-operandos. A opção ret, que executa o retorno da sub-rotina, é executada em paralelo, no mesmo ciclo. Add-immediate é a única instrução de um-operando. Uma opção de entrega se estende (pilha, implícita) precisão de adição. HF0000 - hFFFF é de reposição. Os caminhos de dados de pilha e ALU são de 32 bits no entanto, são suportadas operações de 16, 32 e 64 bits. Os valores de 64 bits ocupam dois lugares na pilha, com bits menos significativos no topo. O topo da pilha, T e o próximo na pilha, N, são registrados fora do BRAM para eficiência. Além do deslocamento esquerdo de 64 bits (opshl64), que é hard-wired para a execução de um único ciclo, todas as outras funções de dupla precisão são sub-rotinas de software. Idioma de montagem O binário incorporado GPS foi criado usando o MASM do Macro Assembler Microsofts. Isso só suporta mnemônicos x86, mas os códigos opcionais são declarados usando equ e o código é montado usando diretivas dw. MASM não só fornece resolução de rótulo, expansão de macro e avaliação de expressão, mas mesmo estruturas de dados O operador MASM dup () é usado extensivamente para desenrolar loops, e. Dw N dup (opcall dest) chama uma sub-rotina N vezes. Este fragmento dá algum sabor de estilo fonte. O efeito de pilha é comentado em cada linha: opfetch16 e opstore16 são primitivas. Opstore32 e opstore64 são sub-rotinas ou instruções compostas utilizáveis ​​como se fossem primitivas. T é na verdade 15: 0,31: 16 após opswap16. Mas não nos interessamos os 16 bits superiores aqui. Opstore16 deixa a profundidade da pilha de endereços só pode mudar plusmn1 por ciclo. Podem preferir os puristas: dw N addi Interfaces de série do host O FPGA pode ser controlado via SPI pelo Raspberry Pi ou por um PC Windows usando um cabo JTAG USB da plataforma Xilinx. Existem dois níveis de prioridade de solicitação: envie um novo comando e uma pesquisa para a resposta ao anterior. As novas imagens de código são copiadas para a memória principal por meio de um terceiro BRAM que engata a CPU e os domínios do relógio serial. Assim, baixados, as imagens binárias são executadas automaticamente. Os comandos do host são capturados na ponte BRAM e a CPU é sinalizada para a ação deles. Suas respostas são coletadas pelo host da ponte na próxima varredura. As pesquisas de loop principal de nível superior para pedidos de serviço de host. A primeira palavra de qualquer mensagem do host é um código de comando. Os pedidos são despachados através da tabela de salto Comandos: o optor move o vetor para a pilha de retorno. Alguns pedidos do host (por exemplo, CmdGetSamples) provocam respostas longas. As portas de dados no lado da CPU da ponte são de 16 bits. A CPU pode ler e escrever estes através da pilha de dados no entanto, existem caminhos mais diretos para carregar amostras de memória principal e GPS IF. A instrução opwrEvt GETMEMORY transfere uma palavra de memória diretamente para a ponte, usando T como ponteiro de incremento automático. GETMEMORY é o único evento que tem efeito de pilha. A instrução opwrEvt GETSAMPLES transfere 16 bits do amostrador IF: desenrolando loops no tempo de montagem com dup () tropa o tamanho do código para o desempenho, evitando um hit de decremento-teste-branch e todo o binário do aplicativo ainda é pequeno no entanto, loops longos devem ser aninhados , as illustrated above. CHANNEL data structure An array of structures holds state variables and buffered NAV data for the channels. MASM has excellent support for data structures. Field offsets are automatically defined as constants and the sizeof operator is useful. The epoch service routine (labelled Method: ) is called with a pointer to a CHANNEL structure on the stack. Affecting OO-airs, stack-effect comments refer to it as this throughout the routine. A copy is conveniently kept on the return stack for accessing structure members like so: The Chans array is regularly uploaded to the host. Raspberry Pi application software The Raspberry Pi software is multi-tasked using what are variously known as coroutines, continuations, user-mode or light-weight threads. These co-operatively yield control, in round-robin fashion, using the C library setjmplongjmp non-local goto, avoiding the cost of a kernel context-switch: Up to 16 threads can be active:Outstanding Micro Cluster Production Technologies MLL-1 anti piracy micro laser treatment, line perforation real alternative for galvanometer or scanner, super-high speed rotate cone mirror, cluster micro technology for holes pattern, perforation design, waves, zigzag or packages lines, cryptograms, company logos, holograms, anti piracy, counterfeiting, security paper, safety, bank note, metal sticker, printing, laminating, coating, fruit, food, bread, vegetable, agriculture covering, credit cards, transparent film, holographic paper, cigarette, tipping, filter, aluminum foil, shrinkable film, tear tape, cardboard, matrix code, identification, marking, scribing, jewelry, automotive, pharmacy, golf, marina, tobacco, smoking, chemical, medical, product, electronics part, indicator, porosity contours or p rofile, embossing, bioengineering, membrane, filtration, focus, holographic, hinge-lid, pack. Patent pending DE102004012081. LPM-1 micro laser cluster perforator, material treatment at wide web, large area, surface or entire material cluster treatment, cutting, welding, drilling, ablation, cleaning, melding, high power, ultra high speed rotate quad or twin laser beam splitter, twin level vacuum multiplexer, up to 4 Kilowatt laser input, flexible hollow fibers, HGW, HCW, up to 200 output channels, Co2. Material treatment and robotic handling for stainless steel, ceramic, aluminum, wafer, gold, glass, silver, brass, copper, wafer, silicon, titanium, silicon, solar, panel, photovoltaic, micromachining, slitting, rewinding, refining machines or stand along systems. Micro cluster perforation for all kind of paper or specific plastic web material. Patent granted DE102004001327. Nano Micro perforation or other material surface treatment . electrostatic cluster perforation, micro perforator, for cigarette, tipping, filter, packaging, plug wrap, Kraft, cement, pet, powder, sack, bag, fine and other paper, silicon or other coating, certain plastic film, laminate, porosity from 80 up to 2,500 C. U. from 50 down to 4 Gurley, hole sizes from 50 nm up to 100 micron, hole densities from 80-260 hcm2, zone widths from 2.0-6.0mm, up to 16,000,000 holes per Second, web speeds up to 600 mmin, web widths up to 2,000mm. Patent grantededed DE10328937. Twin ACAC, ACDC frequency shift converter high power, high frequency, high voltage, ultra short mega peak current, electrostatic nano or micro cluster perforation, ignition, sparking, arc, cigarette, tipping, filter, fine, packaging, paper, plug-wrap, sack, bag, Kraft, food, plastic film, foil, textile, fabrics or other product, switching converter, compressor, emergency, train, ship or vessel power supply, generator, fuel cell, upward, downward, frequency shift switching unit, stabilizer, soft starter, vector, phase, inverter, servo system, motion, stepping, machine, asynchronous, standard, motor, torque, automation, remote, gas, slab, laser, diode, stack, fiber, fibre optics, beam, material, hybrid, plug-in, battery, renewable, energy, medical equipment, membrane, filtration, robotic, photovoltaic, industrial automation, drives, IGBT, MOSFET, FRETFET, HVFET, tube, rf, hv. Patent grantededed DE10328937. Online OPSS-1 porosity vision scanning control system permeability cluster control for electrostatic or laser micro perforation machines, multiple color sensor head, spectral intensity, DSP, FPGA, CCD, line, precise, laser, position, material finger print detection, VIS wave length, opacity, defects, inspection, image control, scanner systems, process software, line, camera, vision control, filter, tipping, cigarette, book, packaging, magazine, bible, wall, Kraft, paper, coffee, tea, food, co-extrusion foil, film, agriculture, cement, domestic or other moving fabrics or web material. Patent pending DE10251610, China patent granted 200310104764. in-situ dyne or surface tension control ODSTM-1 at fast moving substrate, plastic, film, foil, tear tape, laminate, co-extrusion, BOPP, LLDPE, LDPE, PE, PP, PVC, MOV, MOH, FEP, PET, OPP, PTFE, MPET, spectral, extinction, monolithic, sensor, analyzing, Subangstrom, roughness, measurement, wavelength, wobbling, stray, light, beaming, water drop, angle, inspection, corona, plasma jet, laser, IR, NIR, scanning, monolithic spectrometer, photonics, spectral, properties, reflectometer, scatterometry, ellipsometry, opto, acoustic, basic, weight, techniques, corona, flam, gas treatment. Previous patent application DE19543289. Micro perforation - archipelagos of technical possibilities Mikro Perforation ndash Archipel technischer Moumlglichkeiten online porosity, in-situ dyne surface tension control and material inspection systems Nano Mikro Cluster Technologien fuumlr Materialbahn Veredelungen Zur Atmungsaktivierung, Wasserdampfdurchlaumlssigkeit, Gasaustausch oder Ventilation und unter anderem zur Beibehaltung der Wasserdichtigkeit werden Produkte wie Verbundstoffe, Zigaretten-, Filter-, beschichtete Spezial-, Kraft-, Sack - oder Verpackungspapierbahnen, Vliesstoffe oder technische Textilien mit Flaumlchengewichten von 20 gm2 bis zu 140 gm2 elektrostatisch Nano oder Mikro sowie mit feinen Laserstrahlen Mikro oder Makro perforiert. Unter elektrostatischer Nano oder Mikroperforation sind statistisch unregelmaumlszligig verteilte, in der Groumlszlige, wenn gewuumlnscht, mit bis zu 40 variierende und analog hierzu unter Laser Mikro oder Makro Perforation, gleichmaumlszligig angeordnete und im Durchmesser etwa gleichgroszlige, nach Moumlglichkeit runde, gradfreie Loumlcher und Lochreihen verschiedenster Anordnung zu verstehen. Bei der elektrostatischen Perforation finden im bis 1.5 mm weiten atmosphaumlrischen Elektrodenspalt der meist duumlnnen oder spitzen, gegenstaumlndigen Elektrodenstifte Bluumlmlein - und dielektrisch gefoumlrderte Mikroendladungen mit Filamentierung zur Erzeugung eines Plasmentunnels und sich damit aufbauenden, ionisierten Funkenstreckenkanal im Nanosekundenzeitfenster statt. Mit jeder hochspannungstechnischer Entladung und Deionisation im Spannungsbereich bis zu 50.000 Vss, deren Leistungselektronik patentiert ist, entsteht fuumlr die im Elektrodenspalt relativ schnell durch bewegte Materialbahn eine elektrostatische Nano oder Mikroperforation mit praumlzise gesteuerten Energieanteilen von 0.1 bis 3 mJ pro erzeugter Pore, die mit bloszligen menschlichen Auge unsichtbar sind und vollflaumlchig wie auch zonenfoumlrmig in bestimmten Abstaumlnden uumlber die Bahnbreite verteilt sein kann. Lochgroumlszligen bewegen sich dabei im Durchmesserbereich von 50 nm - 80 microm bei Lochsequenzen von 1.5 ndash 16 Million Poren pro Sekunde. Zonenanordnungen sind in Breiten von 2 bis 6 mm bei Porendichten von 120 - 250 Porencm2 erreichbar, wobei Flaumlchenperforationen oder so genannte Nano - oder Mikrocluster Lochdichten bis zu 3 Million Porenm2 oder 300 Porencm2 generieren. Die so erzeugten elektrostatischen Mikroperforationen ermoumlglichen Porositaumltsbereiche von 80 bis 2500 C. U. ( Coresta Unit ml2cm2min ) oder respektive 30 ndash 6 Gurley bei Materialbreiten von 100 bis 2000 mm und Bewegungen bis zu 500 mmin, abhaumlngig vom Luft - oder Gasdurchsatz und Materialkonsistenz, welche die Perforierbarkeit bestimmt. Mit zwei oder drei Multisektionen von elektrostatischen Mikroperforationseinheiten und simultanen Doppelmaterialbahndurchlauf innerhalb jeder Sektion lassen sich Produktionsausbringungen je nach Materialart, Flaumlchengewichten und Perforierfreudigkeit von 1000 bis 4000 Tonnen pro Jahr erreichen. Joint Kraft Paper mit elektrostatischer Makro Perforation, erzeugten company Logo, Scripts oder anderen Zeichen Grundsatzforderungen fuumlr Produktapplikationen mit Verbundstoffen, Vliesstoffen oder Verpackungsbahnen welche Notwendigkeiten von Gas - oder Wasserdampfdurch - aber Wasserundurchlaumlssigkeiten verbunden sind, fordern den Einsatz der elektrostatischen Nano Mikroperforation regelrecht heraus, da Wasser oder andere Fluumlssigkeiten die relativ kleinen Nano - oder Mikroporen von z. B. kleiner als 0.5 - 5 microm Durchmesser aufgrund der hydrophoben Oberflaumlche das Produktmaterial nicht penetrieren kann. Diese und weitere physikalische Vorteile der kleinen Poren und hoher Dichte lassen ermoumlglichen einen vorteilhaften Industrieeinsatz, da Erfuumlllungen zur Atmungsforderung und Wasserdampfdurchlaumlssigkeit z. B. nach den ASTM E96-80 oder E96-84 Messmethoden mit 100 ndash 800 gm2Tag mit Laserperforations - oder anderen Prozessverfahren nur aumluszligert schwierig und technologisch aufwendig machbar, zu teuer, zu unwirtschaftlich oder bei derart hohen Lochdichten technologisch keinesfalls erreichbar sind. Elektrostatisch Nano oder Mikro perforierte Verbundstoffe, Packmittel oder Folienverbunde verschiedenster Art lassen sich beispielhaft fuumlr folgende Produkte und Applikationen verwenden. atmungsaktive Wanddekorationen mit Beschichtungen oder PVC Verbunden Wandtapeten, Vinyl, Dekore oder andere PE beschichtete Auflagen Fugen - oder Kantenbaumlnder zum Verkleben von Gipsplatten fuumlr den Innenausbau Kanten - oder Eckenschutzkraftpapiere mit Luftblasendiffusion des aufgetragenen Klebers Vliesverbunde mit duumlnnen PE Schichten zum Auszligengebaumludeschutz und Gasaustausch von Holzhaumlusern Unterdachspannbahnen aus Verbundmaterialien mit Gewebeeinlagen zum Gasaustausch zur Vermeidung von Kondenswasserbildung atmungsaktive Overalls oder Einmalberufskleidung aus duumlnnen PE Vliesen PE beschichtete Papiere fuumlr Fuumlllgutsaumlcke, Granulate, Gipstuumlten, Zementsaumlcke, Tierfutter oder andere Verpackungseinheiten, die einen Luft Auslass zur vorteilhaften Befuumlllung oder Warengutbeluumlftung zur Lagerung benoumltigen Biotope, Gewaumlsser mit Sauerstoffanreicherung Bekleidungseinlagen oder inlet mit atmungsaktiven, komfortablen Trageeigenschaften Seifen, Deo, Hygiene, Ha utpflegemittel, Babypflege oder body care Produkte oder Verpackungsstoffe mit Duftstoffsuggerierung und Indikatoren als Marketinginstrumente Trage-, Gemuumlse - oder Blumenverpackungen aus Papier oder Papierersatzverbundstoffen mit Gasaustausch Brot-, Broumltchen-, Fruumlchte-, Lebensmittel oder Nahrungsmittel aus Papierverbundstoffen zur Erhaltung der Frische und Aromas technische Industrieverbundfolien oder Papierersatzmaterialien fuumlr industrielle, medizinische, biologische Filtrationszwecke Nano Filtration, Mikrofiltration, Nano Membrane, Mikromembrane, Batterie Separatoren Bioanalyse, Alkoholfiltration, Fluumlssigkeitsfiltration, Medizintechnik, Analysetechnik, Labortechnik, Agrarwirtschaft signifikante Reduktion von Sack - oder Beutelbefuumlllungszeiten um bis um 100 attraktive Luftdurchsatzbereiche bei 200 - 500 C. U. oder 14 bis 3.5 Gurley unveraumlnderter Auszligenschutz des Verpackungsproduktes Luft Auslass ohne Beeintraumlchtigung verpackter Produkte und deren Eigenschaften uneingeschraumlnkte Erhaltung der Barriereeigenschaften Duftindikation und Suggestion fuumlr den Kaumlufer ohne die Packung zuvor zu oumlffnen Atmungsaktivitaumlt von Wandtapeten oder Wandverkleidungen zur Vermeidung von Schimmelbildung und Faumlulnis Brotpapierverpackungen zur laumlngeren Haltbarkeit Aroma - und Frischeerhaltung, Haltbarkeitsverlaumlngerung, Pflanzenabdeckungen Foumlrderung und Verlangsamung von Wachstumsprozessen Gemuumlse, Fruumlchte und andere Produktgeschmacksentwicklungen innerhalb der atmungsaktiven Auszligenhuumllle Atmungsaktivitaumlt und Tragkomfort von Bekleidungseinlagen oder inlet keine innere Schweiszligbildung bei Einwegbekleidung, Lackier - oder Kesselanzuumlgen Unterdachspannbahnen zum Luftaustausch von Innen nach Auszligen zur Verhinderung von Tropfsteinhoumlhleneffekten Reinigungs - und Absche idungsprozesse mit Membrantechniken Blutkoumlrper, Partikel - und organische Filtration fuumlr medizinische, biotechnische und industrielle Analysen Berechnungen fuumlr Flaumlchenperforationen Grundformeln zur praktischen Auslegung einer Anlage (1) Anzahl der Elektrodenpaare. INT ( Bahnbreite (m) ( K-Ab n-Stifte-E )) (2) Porendichte. ( Summe - Estifte f ) ( BB (m) Vb (ms) ) (3) Porenabstand in Laufrichtung. Vb (ms) f (1s) K-Ab kleinster Lochreihenabstand in Bahnquerrichtung, z. B. 0.8 mm n-Stifte-E Anzahl der Elektrodenstifte pro Elektrodenpaar, z. B. 12, 24, 32, 48 Vb Bahngeschwindigkeit in ms F Repetitionsfrequenz der Funkenstrecken in Hz, z. B. 4000 Hz, 6000 Hz, 10.000 Hz BB Bahnbreite in Meter Bahnbreite 1m, Bahngeschwindigkeit 300 mmin 5 mSek. f 6000 Hz, K-Ab 0.8 mm ( min. Abstand in Querrichtung ), n-Stifte-E 48 (1) INT ( 1000 mm ( 0.8 mm 48 )) 26 Elektrodenpaare (2) ( 48 26 6000 1s ) ( 1 m 5 ms ) 1.497.600 Porenm2 (3) 5 ms 6000 1s 0.83 mm Porenabstand in Laufrichtung Nur die elektrostatische Mikroperforation ermoumlglicht durch fein dosierte Energieeinkopplung und Funkenkanalerzeugung eine nano oder mikrofeine Ventilation fuumlr Packmittel mit erhaltenen Barriereeigenschaften, Schaffung von Atmungseigenschaften fuumlr Domestik - und Massenprodukte, industrielle oder medizinische Nano oder Mikromembranen mit Mikrocluster, Vliesstoffe und insbesondere Papierbahnen verschiedenster Art bei relativ groszligen Bahnbreiten und Transportgeschwindigkeiten, welche aus physikalischen oder prozesstechnischen Gruumlnden nicht mit anderen Verfahrenstechniken erreichbar sind. Dieser Trend wird sich fuumlr spezielle Produkteigenschaften und Anwendungen fortsetzen. Die state-of-the-art, industrietaugliche und im Dreischichtbetrieb zuverlaumlssig arbeitende Nano Mikrocluster Perforationstechnik, deren Integrationsmoumlglichkeit in vorhandene Umroller - oder sonstige Bahnlauf - und Materialbewegungsanlagen sowie auch als voumlllig eigenstaumlndig arbeitende Produktionsmaschinen moumlglich sind, wird zukuumlnftig neue Anwendungsbereiche erschlieszligen und Produkte mit besonderen Eigenschaften entstehen lassen. Durch Weiterentwicklungen von hybriden, modularen Schaltungstopologien mit IGBT, MOSFET, FRETFET oder HVFET zur Erzeugung stromgesteuerter Hochspannungsentladungsimpulse im Zeitfenster von 10 ns bis 15 micros und Pulsendladungen von 0.1 bis 3 mJ hat die Nanotechnologie und Submikroperforation auch im Bereich der Feinpapierveredelung und Verpackungsstoffverarbeitung Einzug gehalten. Auf die anderen zuvor genannte Applikationsbereiche ist dies fuumlr die beschriebene Mikroclustertechnologie uumlbertragbar. Kunststofffolien wie PE, PP, PVC, LLDPE, BOPP, EVA, MVA, MOV, MOH, FEP, HDPE lassen sich auch zukuumlnftig besser mit hot oder micro needle oder anderen mechanischen sowie mit Gasendladungs - oder Festkoumlrperlaser gesteuert perforieren. In diesem weiten Applikationsspektrum ist es denkbar auch dahingehend entwickelte, angepasste Laserperforationssysteme fuumlr Breitbahnen bis zu 2000 mm und Lochsequenzen uumlber 3 Mil. Sek. einzusetzen. Durch Polygon um gelenkte oder gepulste, fokussierte Laserstrahlen bei vorzugsweise 10.6 microm Wellenlaumlnge sind mit im internationalen Markt angebotenen Anlagen Lochgroumlszligen von 60 microm - 200 mum bei Lochdichten von typischer Weise 10 ndash 30 Loumlchercm, Lochsequenzen von 100.000 bis 300.000 Loumlcher pro Sekunde, bei maximal 16 oder 32 Laserlochreihen uumlber die Materialbreite verteilt, realisierbar. Damit genierte Luftdurchlaumlssigkeitsbereiche betragen 100 ndash 3000 C. U. bei Materialbreiten in der Regel von 100 ndash 500 mm bei relativ hohen Bewegungen bis 10 mSekunde, abhaumlngig von verschiedenen Parametern. Laserperforationstechniken von IPM Mit Entwicklung des patentierten IPM Dual Hochleistung Lasermultiplexers und optischen Eingangsleistungen bis zu 8 KW, bei fast oder slow flow sowie SLAB Laserquellen mit 10.6 mum oder auch anderen Wellenlaumlngen, ist es erstmalig moumlglich, bis zu 200 separierte optische Laserstrahlausgaumlnge zu realisieren, mit denen unter anderem auch Mikroperforationen und anderen Bearbeitungen wie Schneiden, Schweiszligen, Bohren, Abtragen, Trennen, Fuumlgen, Verguumlten, Polieren usw. in Breitformaten und Substraten bis zu 5000 mm machbar sind. Dies sowohl in Kunststoffmaterialien, Folien, Papier wie auch in Stahl, Edelstahl, Aluminium, Keramik, Solarzellen, Glas, Kupfer, Messing, Gold, Silber, Silizium, Blei, Bronze, Druckguss, Werkzeugstaumlhlen, Holz usw. Hierbei werden im auf zwei Ebenen aufgebauten optischen Dualmultiplexer mit hoch rotierenden Doppelstrahlteilern bis zu 200 Lasereinzelstrahlen erzeugt und uumlber flexible Hohlfasern dem Bearbeitungsort zugefuumlhrt, deren exakte Positionierung ein automatisiertes Robotersystem und motorgesteuerte Mikro Fokussierung beinhaltet. Bei diesem Lasermikroperforationssystem sind jetzt Lochsequenzen bis zu 2 Millionen pro Sekunde, Lochgroumlszligen von 60 microm - 100 microm, Lochdichten von typisch 10 ndash 30 Loumlchercm, Porositaumlten von 100 - 1000 C. U. Geschwindigkeiten bis zu 400 mmin bei Materialbreiten bis 2000 mm machbar. Damit ist eine vorteilhafte Basis geschafft, um 25.000 Meter Jumbo Rollen an der Ab - und Aufwicklung non stopp zu veredeln, was 2000 ndash 3000 TonnenJahr von Lasermikroperforierten Feinpapieren oder anderen Verpackungsverbundstoffen an der high tech Automation gefuumlhrten Produktionsmaschine LPM-1 bei geringen Papierausschuss von kleiner 1 mit Qualitaumltszertifizierung einer jeder Produktionsrolle ermoumlglicht. Hierbei ist das patent angemeldete, optische online Permeabilitaumlt Prozessmesssystem OPSS-1 in traversierender Ausfuumlhrung zur praumlzisen Positionskontrolle aller Laserperforationslinien sowie der moderaten Erfassung aller Porositaumltsprofile ein integraler Bestandteil der ISO Qualitaumltskontrolle und Datenauswertung zum Ende einer jeden Produktionsrolle. Eine weitere, zum patentangemeldete Entwicklung stellt die Mikro-Laser-Line Perforations - und Strahlauslenkungstechnologie MLL-1 dar, welche einen nicht geradlinigen Laserstrahlverlauf und damit verbundene Lochreihenanordnung auf Materialien ohne Galvanometer oder Piezo Aktuatoren bis zu 2000 Hz ausfuumlhrt. Breite Anwendungen finden sich z. B. fuumlr Mundstuumlckbelagpapierblaumlttchen der Zigarettenfilter, RYO, MYO, usw. gegenuumlber den von seit mehr als zwei Jahrzehnten traditionell stets koaxial verlaufenden Laserperforationen. In Sicherheitspapieren, Banknoten, Reisepaumlssen, hochwertigen Geschaumlftsbriefboumlgen, graphische Papiere, Hologramme, Broschuumlren, Buchdeckeln, Geschenkkarten, Geschenkartikeln, Kundenkarten, ATM Kreditkarten, Zugangscodes, Kontrollkarten, Herstelleridentifikation, Produktverfolgung, OEM Garantie, Typenschilder, Deklarationen, Firmenpraumlsentationen und hundert anderen Plastikfolien, Kunststoffe oder metallischen Materialien lassen sich wellenfoumlrmige, Zickzack, Rechteck, Dreieck, gewundene Lochreihenlinien, Firmenlogos, Kryptogramme, Scripts, anti counterfeiting Indikatoren, Merkmale, Identifikationen oder andere beliebige Ausfuumlhrungsformen als Oberflaumlchengravuren, Materialritzungen, Materialabtragungen, Imbedding oder Mikroperforationen dauerhaft mit zeitlich sehr schnell, praumlzise aus gelenkten Laserstrahlen einbringen. Fuumlr Lasermikroperforationen mit Co2 Laserquellen ist dies bei Lochgroumlszligen von 60 microm - 120 microm, Lochdichten von typisch 10 ndash 30 Mikroloumlcherncm bei Lochsequenzen von 100.000 - 300.000 LoumlcherSek. und Permeabilitaumltsbereichen von 100 ndash 800 C. U. realisiert. Ventilation von Massenprodukten Die elektrostatische Mikroperforation ist seit 30 Jahren zur Ventilation von wenigen Nichtfilter - und jetzt fuumlr fast alle im Markt befindlichen Filterzigaretten eingesetzt, um gesteuerte Luft Bypass Eigenschaften, dem so genannten Lindstroumlmprinzip, zu erzeugen. Hierzu wird das Zigarettenpapier fuumlr wenige Nichtfilterzigaretten z. B. auch Roll-your-own RYO und bei fast allen Filterzigaretten das Mundstuumlckbelagpapier, dem so genannten Tipping aber auch das Plug-Wrap Papierblaumlttchen, elektrostatisch im Offline Verfahren Zonen Mikro perforiert, um gewuumlnschte Poren im Durchmesserbereich von 10 - 70 microm generieren. Oder mit fokussierten Laserstrahlen in Offline Verfahren Lochreichenperforationen aber auch im Online Verfahren an der Filteransetzmaschine direkt durch das Mundstuumlckbelagpapierblaumlttchen bis in den Zigarettenfilter gewuumlnschte Poren im Durchmesserbereich von 60 - 120 microm einzubringen, um so Nikotin-, Kondensat - und Schadstoffanteile fuumlr den Raucher uumlber die gesteuerte Ventilationskombination auf strikt vorgegebene Werte zu reduzieren. Vor vielen Jahren hat IPM auch zur Online Mikroperforation an Zigarettenherstellungsmaschinen ein Verfahren entwickelt und seinerzeit unter EP0460369 sowie DE4018209 zum Patent angemeldet, welche das Einbringen von Mikroperforationsprofilen uumlber die jeweilige Zigarettenlaumlnge sowie in deren Umfang an beliebigen Stellen des Zigarettenpapiers erlaubt. ONLINE LASER PERFORATION with patent grantededed high speed multiplexer DE102004001327 A ndash laser source and IPM patent granted multiplexer with 8 optical channels by 8 laser lines, 10.6 micron, CO2, sealed off laser, M2lt0.9, e. g. Coherent ULR-300, 300W Synrad, PRC by 4 laser lines, 10.6 micron, CO2, sealed off laser, M2lt0.9, e. g. Coherent ULR-150, 200W Synrad, PRC laser source dimensions all over approx: 1100200200mm, water cooled output 45 grad divert mirror IPM multiple laser beam multiplexer centre rotate twin beam splitter and high speed motor (not shown) up to 900 rpmsec. diameter approx. 400mm, high approx. 200mm 8 optical output channels, coupled special hollow fibres, HCW, HWG, each in lengths 1,000-3,000 mm B ndash bobbin unwinder and perforation heads tipping paper from 48 up 64mm web width 8 perforation heads, 4 on each side each laser beam supply with special hollow fibres and auto focus devices diameter of each focus device around 25mm, distances in web direction around 50 mm length of necessary perforation section approx. 200mm by 8 laser lines necessary width of perforation section - tipping paper width 40mm on both sides C ndash tipping paper strips with 8 laser perforation lines up to 10,000 cpm or 135 mmin tipping paper web speed 4 laser perforation lines on each side total round or oval hole sizes between 60 up to 180 micron diameter up to 8 holescm, one hole with e. g. 14 C. U. 8 hcm14 C. U.h42cm (Coresta) in total around 900 C. U. ventilation grad 10-80 with twin or quad rows by 8hcm8 holesrows135 mmin 14,440 holess in total further information on request Kontrolle von Nano oder Mikro Permeabilitaumlt Cluster Permeable, naturporoumlse, Gas - oder Wasserdampfdurchlaumlssige, Nano oder Mikroperforierte Warenbahnen, Verpackungsstoffe oder andere bewegte Materialien bewegen mit Transportgeschwindigkeiten bis zu 10000 mmSekunde bei Breiten bis zu 5000 mm, so dass sich pneumatische, Uumlber, Unterdruck oder Jetstream Systeme oder andere Materialberuumlhrende Prozessmessungen als online Kontrolle exorbitant schwierig gestalten. Des Weiteren haften den Materialberuumlhrenden Messmethoden moumlgliche Nachteile hinsichtlich Bahnzugserhoumlhung, Materialabriebs, Faltenbildung, Undichtigkeit im Sensorkopfbereich, starken Verschmutzungen, Nichtlinearitaumlten und anderen Schwierigkeiten an. Optische online Sensormessverfahren bieten vorteilhafte Moumlglichkeiten zur spektralen Transmissions - oder Extinktionsmessung fuumlr die Bestimmung der pneumatisch statischen Gas - oder Wasserdampfdurchlaumlssigkeit dieser bewegten Materialien, wenn wesentliche Grundkriterien wie z. B. optische Transparenz, Opazitaumlt, Spektralverhalten im Bereich von 350 ndash 900 nm, Porengroumlszligen von 50 nm bis 100 microm, Porencluster bis 500cm2, Materialdichte, Konsistenz, Glaumltte, Glanz, usw. erfuumlllbar sind. Dabei ist das Anforderungsspektrum aufgrund der eingangs genannten Produktkonditionen und online Produktionskontrolle, kleinen geometrischen Porenabmessungen, Gasdurchgaumlngen, relativ hohen Transportgeschwindigkeiten und wichtiger Messwert Reproduktion mit der optischen Porositaumltsmessung gut zu loumlsen. IPM hat verschiedene optische Messverfahren und Sensorsysteme in stationaumlrer oder Traversausfuumlhrung als OPSS-1 und OPRL-1 entwickelt, im Markt eingefuumlhrt und mit der DE10251610 sowie auch in China 200310104764, DE19542289 zur Patentanmeldung gebracht, mit denen online Produktionskontrollen und Produktzertifizierungen nach ISO 9001, 9002 und dem Statistical Quality Control (SQC) im Reproduzierbarkeitsgrad und Genauigkeiten unter 2 praktiziert sind. Damit sind Gas - oder Luftdurchlaumlssigkeitsmessbereiche von 80 C. U. bis 5000 C. U. ( Coresta ml2cm2min ) oder 100 ndash 2 Guley in Kombination von hybrid Multifarb - und Intensitaumltssensoren, Permeabilitaumltsprofilerfassungen mit Aufloumlsungen kleiner 0.1 mm mittels integriertem Praumlzision Linienlaser, CCD Zeile, intelligente DSP und FPGA Multicontroller Sensorelektronik, Firmware, RS 232, RS 485 high speed Links oder CAN, Profibus, Ethernet Busanbindungen bei scanning speeds von 20 bis zum 1000 mmSek. ober - und unterhalb des relativ dazu bewegten Materiales im Transmissionsmodus realisiert. Der angekoppelte Industrie PC und deren Prozesssoftware kommuniziert mit dem OPSS-1 Sensorkopf, steuert gleichzeitig die Travers Achse und deren controller und uumlbernimmt ebenfalls die Trendnachfuumlhrung als feed-back close-loop Steuerung zur gravierenden Einengung der Produktmessgroumlszlige. Unterhalb der bewegten Materialbahn befindet sich auf gleicher XY-Achsenlinie die Beleuchtungszufuumlhrung, welche uumlber eine spezielle Lichtfaser der chromatischen Lichtquelle zugefuumlhrt. Messspalte in Z-Richtung sind bisher im Bereich von 2 ndash 10 mm praktiziert, groumlszligere Abstaumlnde sind auf Anfrage und optische Vortestung der Materialkonditionen denkbar. Des Weiteren bietet das OPSS-1 Sensorsystem auch die Moumlglichkeit, nicht nur lokale Permeabilitaumlten, Nanodurchlaumlsse, Massenporen, Mikrokanaumlle oder Mikroperforationszonen, stationaumlr kontinuierlich zu messen, sondern auch auf einer travers bewegten Einheit eine Vielzahl sequentiell nebeneinander angeordneten Messzonen, Bereiche, Permeabilitaumltscluster und Vollflaumlchenbereiche bis Materialbreiten von 5000 mm automatisiert zu detektieren und Messwert gerecht auszugeben. Andere Messgroumlszligen wie z. B. die WDD nach ASTM oder ISO in gcm2h, Liquid, Jet Stream Penetration, Feuchtigkeitsverhalten, Partikelretension, Photonenstrom oder andere physikalische Eigenschaften sind nach entsprechenden optischen Voruntersuchungen moumlglich, sofern die Materialien eine bestimmte optische Transmission im gemessenen Wellenspektrum aufweisen und das Verhaumlltnis zwischen Nutzsignal und Untergrundrauschen 18 ndash 28 dB oder besser betraumlgt. Optische Permeabilitaumlt Porositaumltsmessung Da die naturporoumlsen oder zu perforierenden Bahnmaterialien sich mit Bahngeschwindigkeiten bis zu 600 mmin und in Bahnbreiten bis zu 2000 mm bewegen, gestaltet sich eine pneumatische, also bahn beruumlhrende Porositaumltsmessung, exorbitant schwierig. Hinzukommend sind diese Messmethoden mit Nachteilen der Bahnzugserhoumlhung, des Materialabriebs, Faltenbildung, Undichtigkeit im Messkopfbereich, starken Verschmutzungen, Nichtlinearitaumlten und Schwierigkeiten stets verbunden. Daher bieten sich optische Messverfahren zur Transmissionsmessung als Funktion der pneumatisch, statischen Gasdurchlaumlssigkeit fuumlr naturporoumlse oder Nano, Mikro bzw. Makro perforierte Bahnen an. Dabei sind die gestellten Anforderungen aufgrund der eingangs genannten Produktverarbeitung und online Kontrolle, extrem kleinen geometrischen Porenabmessungen, relativ hohen Bahngeschwindigkeiten und guter Messwertreproduktion mit der optischen Porositaumltsmesstechnik in idealer Weise zu loumlsen. OPSS-1 porosity sensor scanner control - download OPSS-1 Hierzu hat IPM eine Reihe neuer, patenangemeldeter optischer Messverfahren und Systeme in stationaumlrer oder travers Ausfuumlhrung als OPSS-1 und OPRL-1, entwickelt, weltweit im Markt eingefuumlhrt und mit der DE10251610 sowie auch in China unter 200310104764 zur Patentanmeldung gefuumlhrt. PS-250-4 Quad Bobienen Perforationsmaschine - download PS-250-4 Porositaumltsmessbereiche von 80 C. U. bis 5000 C. U. mit Multispektral Sensoren, Perforationslochreihenerfassungen mit Aufloumlsungen lt 0.1 mm mit Praumlzisionslinienlaser, Scanning Speeds von 20 bis zum 300 mmSek. intelligente Multicontroller DSP Elektronik im Sensorkopf, high-speed RS-232 Link sowie Auswerteeinheiten sichern die qualitative, quantitative online Kontrolle nach ISO 90019002 an verschiedenen Produktionsmaschinen. IPM ndash International Perforation Management ndash hat verschiedene Laser und elektrostatische Perforationsverfahren, insbesondere auch fuumlr neue Produkteigenschaften, entwickelt, deren Systeme und Produktionsmaschinen weltweit im Einsatz sind. Zukunftsperspektiven Die elektrostatische ESP Nano - oder Mikroperforation findet vorzugsweise ihre Anwendung in Bereichen der Veredelung von Feinpapieren, Verpackungsbahnen, Vliesstoffen, Non-Woven, Filter-, Sack - oder Kraft - sowie Spezialpapiere verschiedenster Art, insbesondere bei der zusaumltzlichen Behandlung von Bahnmaterialien zur Erzielung besonderer Eigenschaften, welche aus physikalischen oder prozesstechnischen Gruumlnden NICHT mit anderen Verfahrenstechniken erreichbar sind. Die state-of-the-art, industrietaugliche und im Dreischichtbetrieb zuverlaumlssig arbeitende ESP Perforationstechnik, deren Integrationsmoumlglichkeit in vorhandene Umroller - oder sonstige Bahnlaufanlagen sowie auch als voumlllig eigenstaumlndig arbeitende Perforationsmaschinen moumlglich sind, wird zukuumlnftig neue Anwendungsbereiche erschlieszligen und Produkte mit besonderen Eigenschaften entstehen lassen. OPSS-1-B Druckkontrolle mit hi-speed Kamerasystem an QUAD Bobienen Laserperforationsanlagen - download OPSS-1-B Nano Micro technologies - incredible archipelagos of applications Web material as regenerated cellulose films, filter, cigarette, tipping, roll-your-own RYO paper, transparent, coated special, bag or packing papers, bonded fabrics, spun bonded non-woven, technical textiles, fabrics, laminate with base weights from 20 gm2 to up to 150 gm2, up to 20 gm2 LPDE coating films, are perforated electro statically nano, micro, or by laser (mechanical hot or micro needle) with micro or macro holes for wide range of application purposes. Electrostatic NANO MICRO PERFORATION, based at micro discharging and sparking, Bluemlein and Plasma Tunnel effects with gas atomic ionization in Nanosecond time windows. The pores are statistically irregularly distributed with size ranges from 100 nm up to 80 micron diameter and analogically, under LASER or micro macro PERFORATION, arranged in diameter sizes from 60 up 200 micron, at best non-inclined holes und rows of holes of diverse arrangement comprehension. For the human eye invisible electrostatic nano or micro perforations may be arranged in areas as well as in zones with specific distances within its web. Controlled pore sizes in wide ranges from 100 nm to 80 micron diameters by holes sequences up to 16 million pores per second and 0.1 bis 3 mJ discharge energy for each Pore. Arrangements of zones are usually carried out in width from 2 to 6mm and pore density of 15 up to 250 pores per cm2 where as the perforation of area results in pore densities of up to 5 million pores per m2. ESP perforations allow porosity levels from 80 to 2500 C. U. web widths from 100 to 2,000 mm at web speeds of up to 500 mmin, depending on porosity and material consistency in relation to its ability to perforate. PS-250-4 quad bobbin perforation machine - download PS-250-4 PS-1200 wide web perforation machine - download PS-1200 Conventional laser perforation Possible to perforate by pulsed and focused laser beams are holes sizes from 60 to 200 micron at density of holes of typical 10 to 30 holes per cm length, holes sequences up to 400,000 holes per second at a maximum of 32 hole rows by laser distributed over the width of the web with traditional systems or machines on the market. Porosity levels from 100 up to 3,000 C. U. by web widths up to 500mm at web speeds of up to 600 mmin are archive able, depending on porosity and material consistency in relation to its ability to perforate. IPM laser perforation processes IPM owns development of LASER PERFORATION technology LPM-1, patent granted DE102004001327, operates with quad laser beam input of 8 Kilowatt optical power input ( fast flow or SLAB laser with 10.6 micron wave length ) to an upperlower dual beam multiplexer to generate up to 200 individual laser perforation beams, rows, lines across the web, combines automatic laser perforation head positioning, focus setting, by web speeds up to 400 mmin, web widths up to 2,000 mm, up to 4,000,000 holes per second. Each laser perforation lines are archive able from 100 up to 2,000 C. U. Jumbo-roll-by-roll production, optical online porosity vision and simultaneous perforation line positioning control, full feed-back system for constant porosity levels are further features. Each laser perforated jumbo roll is ISO production data controlled, benefit and certificated. Other industry areas The conception of high power twin laser beam multiplexers enable many possibilities in other industry application fields as cutting, cut-offs, welding, surface finishing, drilling, polishing, forming, surface treatment, roughness improvement. Each of the 200 single perforation head can be positioned in X directions across the running web or other laser treated material sheet, substrates, blocks etc. The automatic processes, equipments and devises opening completely new possibilities in industry, science, military or space laser application. Patent grantededed of process and device with DE102004001327. Other laser features A patent pending Micro Laser Line perforation technology MLL-1 generates sinus, waves, zigzags or other kinds of perforations cryptograms, designs as multiple or quadruple pairs of micro laser lines in web direction. Hole, slot or star sizes in ranges from 60 up to 200 micron are possible. Provide for tipping, cigarette, packaging or other kind of paper, plastic film or other web material. Special features of micro laser line perforation enables fundamental new product characteristic in scripts, e. g. for mouthpieces with tipping paper, CTP on cigarette filters, product indication with visible perforation holes, brand name, company logo, indications, anti counterfeiting designs, cryptogram, etc. In addition for other industry, medical, science, defense or military purposes, material and applications fields. Patent pending for process, device and product property DE102004012081. Ventilation of mass products Electrostatic perforation has been used since 30 years for ventilation of non filter, RYO or filter cigarettes to create a directed and guided air bypass or Lindstroem principle. For this purpose, cigarette paper for some non filter or RYO cigarettes and almost every kind of filter cigarettes tipping papers are perforated electro statically OFFLINE in zones from 2.0 up to 6.0mm width or in rows with ON-LINE or OFF-LINE by use of slow, fast flow, sealed-off or SLAB CO2 gas or diode laser in order to reduce the harmful substances such as nicotine and condensate down to allowed values. Another effect is the possibility to control the degree of ventilation of Cigarettes. O nline micro perforation ndash porosity profile Y ears ago IPM had developed a multiple online electrostatic micro perforation OESP-1 units at cigarette making machines which was patent applied with EP0460369 and DE4018209. The method and the device for electro-erosive perforation of cigarette paper basically operates with at least two pairs of electrodes which are ignited at the same time in such a manner that each perforation section is treated twice in order to provide a corresponding intensity of perforation, taking into consideration the duration of ignition and the web speed. In particular, the invention operates with at least four pairs of electrodes, between which the web of cigarette paper to be perforated is moved through. The cigarette paper is moved in the longitudinal direction of the cigarette to be produced later, the width corresponding to the circumference of the cigarette plus an overlap section for bonding. Perforating is carried out transversely to the direction of movement, that is to say an accurately defined zone section is produced around the circumference of the cigarette. The pairs of electrodes are arranged at a distance which corresponds to half the cigarette length (a, b, c) when four pairs of electrodes are used. The first and the third pair of electrodes are ignited simultaneously. A distance dependent control causes the second and fourth pair of electrodes also to be ignited simultaneously when the previously perforated sections have traveled the distance of half a cigarette length. Each section is perforated four times, the speed at which the web (10) can be moved being determined not by the spacing (half a cigarette length) of the pairs of electrodes but by the spacing of the pairs of electrodes in each case simultaneously ignited (one cigarette length). This provides for uniform, intensive and very powerful perforation and the cigarette paper treated can be continuously supplied to the cigarette machine for further processing in the longitudinal direction of the cigarette. That electrostatic micro perforation process enables cigarette or tipping paper while cigarette making processes to reduce nicotine and condensate levels for non-filter and filter cigarettes as well. The OESP-1 devices opens fully new possibilities for cigarette or tipping paper ventilation during cigarette manufacturing by entire perforation cassettes integration into cigarette making machines as Max-S, Protos 80, Protos 90, Mark-9 etc. Advantages during manufacturing Compact all-over-dimensions, direct mechanical integration of perforation units, easy functional interfacing and full EMI acceptance in order of EN or NEC standards archiving high production efficiencies with controllable ventilation grades on highly automated cigarette making machines. Patented, powerful, dual high frequency switching electronics and multiple perforation performances of the circumference of each cigarette enables problem less perforation on high-speed cigarette making machines up to 12,000 cpm Porosity ranges from 50 up up to 400 C. U. pore densities from 25 up to 300 porescm2 hole size from 30 up to 80 micron cigarette ventilation grades up to 45 are archive able. All necessary perforation, production parameters are stored and controlled by microcomputer operation, i. e. geometrical and synchronized positions of perforation lines, zones etc. pore density, perforation zones width and distributions, perforation profile and porosity ranges for each cigarette brand Porosity profiles over the length of each non-filter cigarettes are possible. Furthermore single, multiple, different or equal groups of single perforation zones around the circumference of each cigarette for non-filter, RYO even tipping paper for filter cigarettes are possible. All stored parameter sets are linked to the PLC system. Different micro perforation designs and porosities of each cigarette brand are flexible to define and controllable during all production processes. Air ventilation levels are exactly defined and, due to online feedback, can be kept constant by means of perforation system design and porosity distribution. For non filter cigarettes for example, perforation can be effected over the entire length and circumference of the cigarette. Liability and system investment The ESP process OESP-1 has a high liability and is realizable with low investments and low running costs when compared with online macro or micro laser perforation processes. An online porosity control system OPSS-1 monitor continuously the air permeability, called optical online porovision or porosimeter, with a state-of-the-art technology to obtain a close-loopfeed-back to the perforation unit to keep ventilation grades constant. Conclusion: Inline micro perforation process is possible to use for other mass products and application fields with full system integration in entire production lines as bag, sack, packaging manufacturing etc. ON-LINE LASER PERFORATION with patent granted high speed multiplexer DE102004001327 A ndash laser source and IPM patent granted multiplexer with 8 optical channels by 8 laser lines, 10,6 micron, CO2, sealed off laser, M2lt0.9, e. g. Coherent ULR-300, 300W Synrad, PRC by 4 laser lines, 10,6 micron, CO2, sealed off laser, M2lt0.9, e. g. Coherent ULR-150, 200W Synrad, PRC laser source dimensions all over approx: 1,100200200mm, water cooled output 45 grad divert mirror IPM multiple laser beam multiplexer centre rotate twin beam splitter and high speed motor (not shown) up to 900 rpmsec. diameter approx. 400mm, high approx. 200mm 8 optical output channels, coupled special hollow fibres, HCW, HWG, each in lengths 1,000 up to 3,000mm B ndash bobbin unwinder and perforation heads tipping paper from 48 up 64mm web width 8 perforation heads, 4 on each side each laser beam supply with special hollow fibres and auto focus devices diameter of each focus device around 25 mm, distances in web direction around 50mm length of necessary perforation section approx. 200mm by 8 laser lines necessary width of perforation section - tipping paper width 40mm on both sides C ndash tipping paper strips with 8 laser perforation lines up to 10,000 cpm or 135 mmin tipping paper web speed 4 laser perforation lines on each side total round or oval hole sizes between 60 up to 180 micron diameter up to 8 holescm, one hole with e. g. 14 C. U. 8 hcm14 C. U.h42cm (Coresta) in total around 900 C. U. ventilation grad 10-80 with twin or quad rows by 8hcm8 holesrows135 mmin 14,440 holess in total further information on request Material treatment and microperforation in cluster systems Web material as regenerated cellulose film, filter, cigarette, tipping, roll-your-own RYO, make-your own MYO, wall, decoration, transparent, coated, laminate, sack, bag or packaging paper, bonded fabrics, spun bonded non-woven, food, fruit, medical, under roof house or agriculture vegetable covering, packs, technical textiles, fabrics, laminate with base weights 20 gm2-180 gm2, thicknesses 10-80 microns, up to 20 gm2 LPDE coatings are perforate electro statically micro, or by laser with micro or macro holes for wide range of application purposes. ELECTROSTATIC NANO MICRO CLUSTER PERFORATION or material treatment, based at micro discharging and sparking, plasma tunnel effects with gas atomic ionization in nano second time windows. The pores are normally statistical irregularly distributed in controlled size ranges from 0.05-80 microns diameter and analogically, under LASER or MICRO or MACRO PERFORATION, arranged in diameter sizes from 60-200 microns, at best non-inclined holes und holes rows of diverse arrangement comprehension. For the naked human eye invisible electrostatic nano or micro perforations may be arranged in areas or zone bands with specific distances within its web. Controlled pore sizes in wide ranges from 0.050-80 micron diameters by holes sequences up to 16 million pores per second and 0.1-3 mill Joule discharge energy for each pore. Process and power electronics patent granted with DE10328937. Arrangements of zones are usually carried out in width from 2 to 6mm and pores density of 15 up to 250 pores per square cm whereas the perforation of areas results in pore densities of up to 5 million pores per m2 in surface-all-over design. Electro static perforations allow porosity levels from 80-2,500 Coresta Units (mlmin2cm2, 1,000Pa), equality from 40 down to 3 Gurley material web widths from 100-2,000mm at web speeds of up to 500 mmin, depending on porosity and material consistency in relation to its ability to perforate. One of the foremost postulation which can be applied to many application purposes and products containing bonded fabrics, bag or packaging papers, non-woven, etc. with gas or steam permeability but water in-permeability will be found at the application stage of the electrostatic nano micro cluster perforation. Which means pore sizes from 0.050-80 microns diameter by up to 5 million per square meter. This is due to the waterrsquos greater surface tension which hampers the permeation through the relatively small nano or micro pores. These and other physical advantages of the relatively small pores necessarily demand the application of the cluster perforation method because alternative perforation or processes are NOT feasible, too expensive or simply uneconomical and would not lead to a successful application. Products, applications, advantages breathable and ventilated mass products as cigarette, tipping, filter, packaging, plug wrap, refinish or fine paper booklet, bible, printing, flexo, magazine, promotion, flyers or newspaper with improved or modified surface property decoration or gift paper with thin coating films PVC laminate, Vinyl, decoration or wall paper to eliminate one side condensation effects enable control gas exchanges, avoid rises of mildew or rottenness join or corner Kraft paper tapes to avoid glue bubbles and enables material diffusion fleece bonding material with thin plastic film layers for outdoor and under roof protection or covering, wooden houses, etc. enables gas exchanges technical textiles for gas exchanges to avoid condensation processes breathable overalls, heavy duty or disposable work dresses, trousers, aprons, jackets or shoes made of thin PE fleeces or other material thin PP or PE contacted Kraft paper bag, cement sacks, plaster, maize, grain, pet food, g ranulate or powder for gained air outlet or blowing during filling processes with multiple time reduce efficiency keep packed products in the same barrier condition as without micro perforation extending storage, live time or durability of certain goods and products biotopes and prevention of water pollution leather or cloth inlets for comfortable non sweat wearing under wet, high humidity and tropical condition soap, deodorant, hygiene, beauty creams, baby care or other packaging products which needs smell suggestion for marketing indication and buying advantages vegetable, flowers or food with paper packaging replacements for gas exchanges bread, rolls, fruits or food to improve the freshness and aroma technical multi layer foils for industry, medical, bioengineering or filtration purposes, surface modification or improve roughness micro filter, membranes, battery separation layers, bio or lab analytic, alcohol, liquid or blood filtration, clean room, agriculture plant applications r eduction or force growth rates of bio processes Differences and system integration It is also used especially for additionally treating materials when aiming special characteristics by physical or regular process reasons what cannot be achieved by other process technologies. Moving material web base weights from 20-180 grams per square meters by thicknesses 10-80 microns are possible to use. Including defect inspection, process automation, moisture vapor transmission rate, abrasion resistance of lamination, water proof, ventilated or breathable fabrics. Our state-of-the-art industrially approved, sophisticated, compact, multi functional, optical online sensor scanning systems together or without electrostatic laser perforation technology operates precise and reliable 247, are integrate able into existing rewinding, slitting, spooling, spreading, printing, labeling, complex production lines or other machines and production processes as well. Also, they can be used as completely independent micro surface-all-over or zone perforation units. Fully new ranges of applications will be made available total new products with special features and properties. High power laser multiplexer for industry applications as well for wide web micro perforation machines LPM-1 with tipping, packaging paper, non-woven, spun-bonded, textile, plastic films or other material substrates P atent granted DE102004001327 A German-Thai-Chinese high-tech engineering company offers completely new possibilities with high power CO2 laser multiplexers for wide web applications as well for micro perforation with JUMBO-ROLLS with up to 200 individual laser perforations rows, automatic laser perforation head positioning, focus setting, web speeds up to 400 mmin, web widths up to 2,000mm and more. Several types of material web, e. g. paper, packaging, coated sheets, films, foils, metal sheets and other types of substrates can be micro perforate or treated. We are seeking for RampD, science or industrial partners in licence agreement, technical cooperation, new product or applications in USA and EU. Working principle of high-power laser multiplexer Through 2or 4 Kilowatt dual laser beam sources, two or four level high-power laser multiplexers designed for certain wave lengths from 500 nm up to 10.6 micron, new two level rotary cubic elements, or two quadruple beam splitters or polygons bent facets, using of new developed CO2 hollow waveguide fibres HWG HCW realizable up to 200 optical single channels with assembled focus heads direct on the production web material. Without very extravagant, expensive of optical elements, alignments, lenses, divert mirrors, extended mechanical designs, etc. Pulse sequences up to 4,000,000 per second, single shoots between 0.5 up 3.0 mJ, time windows from 1 micros up to 100 micros and e. g. holes sizes from 1 microm up to 100 microm or microns are possible. Description for wide web micro laser perforation W ide web laser perforation processes, equipment and machines permits e. g. tipping or packaging paper web width up to 2,000mm and more, up to 200 single laser rows across the web by holes sequences up to 4,000,000 per second. Depends of material consistence, perforability, holes sizes and densities web speeds up to 400 mmin, web widths up to 2,000mm, 25,000 meter roll-by-roll, automatic perforation head positioning and focus control, up to 20 bobbins in one cut which means up to 160 bobbins are now archive able without machine downtime. In addition the key element and integrated OPSS-1 porosityposition scanning system complete the feed-back and robot control system. The optical online multi sensor porosityposition control system OPSS-1 is located just behind the laser perforation section and rewind stand to control the perforated material web continuously and supply the data stream to the master PC and close loop. Highly automated and motor adjustable focusing optics one each perforation heads are free position able across the material webs. That automatic procedure and their robot devices open now fully new ways in wide web laser perforations or other material treatments in high speeds ranges, large number of optical single channels and high pulses or holes sequences. In addition with the optical online control systems OPSS-1 porosity, hole qualities and all hole row positions are continuously controlled and differences immediately compensate over master PC controlled feedbacks to the perforation system. Production rolls and products are finished without intermediate stops in high qualities and large quantities. The new high-power laser beam multiplexer open many other application fields, e. g. cutting, cut-offs, welding, surface finishing, drilling, polishing, forming, surface treatment, roughness improvement, etc. Each of the 200 single perforation head can be positioned across the running web or static positioned material substrate. This automatic processes, equipments and devises open up completely new possibilities in industry, science or military or space laser applications. Anti pira cy product design with laser cluster - ultra - high speed for Co2 laser beam control Patent pending DE102004012081 download Micro laser perforation Laser perforation in general, possible to perforate by pulsed or enlarged and focused laser beams are holes sizes from 60 to 200 micron at holes densities of typical 10 to 30 holes per cm, holes sequences from 100,000 to 400,000 holes per second at maximal 16 punctured laser rows, register distribute cross material web width with traditional systems or machines. Means for cigarette, tipping, plug wrap, filter, packaging, pack, tear tape, plastic and other material. With porosity levels from 100 up to 3,000 C. U. normally in web widths from 100 to 500mm at web speeds of up to 600 mmin, depending on porosity and material consistency in relation to its ability to perforate. IPMrsquos laser cluster material treatment, perforation technology IPMrsquos laser cluster material treatment perforation technology LPM-1 is patent grantededed by DE102004001327 operates with quadruple Co2 or other laser types, beam inputs up to 4 Kilowatt to supply a high power twin level, vacuum operates multiplexer. High spins of quad laser beams generates up to 200 individual optical output channels to supply special made flexible hollow fibers HCW, HWG, fibre optics, to archive micro perforation rows cross moving web or static material, combines automatic positioned laser perforation heads, each with motor driven focus, web speeds up to 400 mmin, web widths up to 2,000mm, up to 2,500,000 holes per second, jumbo roll-by-roll production, optical in-line permeability scanner control for perforation line position and quality, porosity feedback, hi-tech automation level and other features. Each laser micro perforation lines can archive 100 up to 1,000 C. U. Super high speed for Co2 laser beam control Technologically performed of Piezo oscillators or ultra-high scan speeds up to 4,000 Hz or 240,000 rpm with commercial air-bearing motors. REAL galvanometer scanner alternatives, precise laser beam deflection up to 4 Kilowatt Co2 by high dynamic performances. From 8 up to 15mm laser beam aperture diameter, advantage beam quality factor M2 less then 0.9 for focus spots down to 60 micron. Absolute diffraction limits, because small focused spot sizes which are proportional inversely of laser beam input diameter. In other words, larger laser beam apertures will produce smaller focused spot sizes, as especially needed for micro cluster perforation, drilling and other micro machining applications. Spin actuator with special optical coating, optimized outer shape, very precise rotation balance by inner body laser ablation, hollow body with inner cavities by low mass material condition, excellent relation of stiffness-to-weight, high hardness, adapted total vibration free vacuum cylinder case, asymmetrically rotary reflection cones from 40 up to 80mm base diameter, average mirror surface roughness lower as 0.1 micron, form accuracy lower 0.01 micron, operation sequences are precise synchronize with material speed. Envelope curves of the selected perforation pattern are storage and calculated by PLC control before single holes and holes groups supervised during production processes. Product process advantages enable total different product indicators and milestones against other laser perforation or material treatment processes which allows significant product property, trademark indications, patent claims, unique company features in micro perforation of tipping, cigarette packaging or other paper or material. Por exemplo. wide range of laser perforation groups as common active ventilation zone to obtain several advances in air stream distributions into cigarette filter, perfect perforation line guiding around cigarette filters or other food, domestic, industry products to assure constant porosity results. Several pattern or wave line design for different brands, number of holes or pattern with 10 or 20 per cm length are constant, porosity range from 100 up to 1,000 C. U. holes sizes from 60 up to 120 micron, holes densities from 100,000 up to 500,000 holes per second in total. From 1 up 6 perforation pattern, lines, marks or scripts can combines a group, perforation hole, pattern quality or porosity remains in standard levels. Other web material, substrate or products are treatable in similar processes, existent laser perforation, treatment machines are able to modify with new optical, micro mechanical and control elements. Low investment and finance budget of technical modifications because exchanges of certain elements, complete devices are adaptable on existent off-line perforation machines or other laser treatment handling systems. Capability to adapt beam divert devices or units at on-line perforation system at cigarette making machines up 12,000cpm. Outstanding product applications For web or sheet material, metal, isolation, foil, film, plastic, substrate, leather, textile and paper enables now large number of possibilities for micro hole position, different pattern, design, wave, zigzag, cryptograms, scripts, marking, scribing, scratching, tear off lines or others which generates. Por exemplo. optimize air distribution characteristics into cigarette filters, unique anti counterfeit piracy indication and not countable product advantages. Special remark creates fundamentally new product properties, e. g. as final products for mouthpieces with tipping paper at cigarettes or other tobacco, packaging, security products, flip off or hinge-lid packs. Specific indication of brand names to recognizable for everyone and even for product buyers, if micro design, holes, patterns, holograms are to see with magnified views only. Or sensitive touch able as Braille scripts generated by micro cluster cryptograms or holograms. MLL-1 targets many existent and new applications with high speed scans of laser beam divert in horizontal or vertical position. Sophisticated ultra high speed spins optical divert elements allows low budget modifications at existent systems and production machines. Micro-Laser-Line technology means real alternative for high speed galvanometer scanner to archive micro cluster perforation, pattern design, waves, zigzag, packages line, cryptogram, company logo, hologram, anti counterfeit piracy contours for security paper, safety, bank notes, cards, metal sticker, printing, laminating, coating, fruit, food, bread, vegetable, agriculture covering, transparent films, plastic sheets, holographic paper, cigarette, tipping, filter, aluminum foil, shrinkable film, tear tapes, label, cardboard, matrix, marking, scribing, automotive, pharmacy, smoking, chemical or medical products, electronics part, chips, indicators, writing contours or profiles, embossing or holographic. The patent of devise, process and product properties are pending as DE102004012081. Other industry fields The conception of high power twin level laser beam multiplexer enables plenty options in other industry application fields as cutting, cut-off, welding, surface finishing, drilling, ablation, cleaning, micromachining, polishing, forming, melting, surface treatment, roughness improvement. Each of 200 single laser beam and coupled flexible hollow fiber HWG HCW up to 3,000mm length allows treatment processes or perforation heads for precise, compact, robotic positioning in XY direction of running web or static placed sheet material. Automatic PLC controlled processes, equipments and devices enables now outstanding possibilities in industry, metal, plastic, domestic, tobacco product, medical, hygienic, wall covering, security cards, bank notes or food application. LPM-1 means cluster material treatment at wide web, large area, surface or whole material treatment, high power twin or quad rotation laser beam splitter, mirror into a vacuum twin level multiplexer, Co2, YAG, Fiber, Excimer, UV laser with multiple optical inputs, flexible hollow fibers, HCW, HWG up to 200 output channels. Material treatment and robotic handling for stainless steel, ceramic, aluminum, wafer, glass, ceramic, brass, copper, wafer, silicon, plastic sheets, titanium, jewelry, silicon, solar, panel, photovoltaic, micromachining, slitting, rewinding, refining, hybrid laser cutting machines or stand along systems. High-speed rotate octagonal beam splitter Renewable energy switching converter A new twin mega power medium frequency switching converter for renewable energy works with hybrid drives, compact EMI safe semiconductor power electronic stages to convert solar or wind renewable energy for direct supply into the 50 or 60 Hz main net. High-tech engineering company IPM develops and patent granted DE10328937 such and other application. Advantages are based on uses of standard switching units with extended IGBT, MOSFET, HVFET semiconductor modules as twin cluster frequency shifting for applications as medium frequency corona substrate treatment, micro cluster electro static perforation, acac, acdc converter, drive units, fuel cells operation, upward or downward converter, laser diode stack power supply equipments, plasma jet, heavy ion research, train, vessel, boot, mining power electronics. Frequency up to 200 KHz and power level up to 200 KW is possible. More information on our websites. IPM is looking for science, industrial, power electronics, marina, mining or others partners who are interest in licence agreement, technical cooperation for other wide application fields. On a high level operate engineering company develops a dual, high power, high frequency switching unit which works with hybrid drives, compact EMI safe semiconductor stages, supporting capacitors, high voltage ferrite transformers to generate HV short pulses and sparking groups. Advantages are based on uses of standard circuits with extended semiconductors for e. g. nano, sub or micro perforation applications, corona treatments etc. The company is looking for science or industrial partners who are interested in a licence agreement and or technical co-operation. Industry application of electrostatic perforation for fast running paper webs using IGBT, MOSFET or HVFET semiconductor power stages. These circuits working as upward converters with power pulses in ranges from 5 microS up to 25 microS and high current peaks up to 300 Amps on a serial connected inductivity and loading capacity that the secondary ferrite transformer coils supply sparking electrodes up to 50 Kilovolt. The circuit works itself with alternating clock frequencies and changes of pulse widths a common load condenser and coupled primary inductance of a ferrite high voltage transformer as upward powerpulse converter and non resonance frequency operation. A safety circuit logic and two hybrid drivers allows a alternately switching of semiconductor A and B which generating higher operation frequencies and power levels meanwhile the electrical and thermal conditions remains on each in the same range as a single switching unit. A controlled pulse timing into a certain time window with a constant or variable frequency generating hole sizes and hole sequences with high voltage sparking through the material webs by nano or micro perforation. The repeating frequencies of the entire circuit can up to the double switching frequency as of each semiconductor stage. A changeable current in the spark channel are feasible with total switching frequencies up to 150 kHz. And in the same time the dual semiconductor switching unit allows a double power level as just only with one switching element is possible. Dual IGBT, HVFET or MOSFET semiconductors in high power, high current, high voltage circuits obtain in electrostatic nano, sub micro perforation, corona treatment or other switching application frequencies up to 250 KHz, power level up to 30 KW and more. Higher power efficiencies and harder switching periods are further advantages. In conclusion the approximately double frequency and power level operation obtains higher switching efficiencies, much more perforation power or higher corona treatment levels which are depend of the industry application. Nano, Sub Micro Perforation Perforation results are now achieve for nano, sub and micro perforation of flexible webs with ultra small pores and products made of these materials. Materials finishing are of interest for numerous demands in the field of packaging, in filling, non-woven industry, technical and science applications, etc. For many years fine and other paper webs with base weights between 20 up to 150 gsqm have been perforated electro statically in large surface all over areas or zone designs of 2.0 up to 6.0mm width. Pore sizes from 0.05 up to 60 microns or 1 to 100 microns, pore distributions of up to 4 Million per sqm in area perforation or respectively 3OO holes per sqcm by zone perforation and hole sequences up to 16 Million per Second can be reached. Air permeability or porosity ranges are among from 50 up to 2,500 C. U. (mlsqcmmin) respectively 3 to 50 lsqmsec. (Franksystem) by paper web speeds up to 450 mmin and web widths up to 1,200 mm are archive able. Application fields Electrostatic perforation processes and machines, corona treatment, surface treatment, high power switching devices, power supplies, ACampDC and other switching converter systems, drives, etc. Fine paper, cigarette, packaging or other fine paper industries, corona system manufacture, switching device manufacture, high-power converter equipment, ACDC, DCAC industry etc. The new dual semiconductor circuit design allows applications to build hybrid drives, semiconductor high-level stage, upward, downward or other converters or generators which operating with supporting capacitors, high-voltage ferrite transformers in an extremely compact and modular design. Several advantages are the high efficiency of pulsepower transmission and energy ratios. Traditional corona or other type of medium generators up to 30 KHz operation ranges are easy to modify to a double frequency and power levels operation. Optical OPSS-1 porosity permeability scanning systems for substrates Patent pending DE10251610 ndash China patent granted 200310104764 Sophisticated, multi functional, optical sensor scanning systems IPM has developed a number of new, patent pending, stationary, scanning optical control processes, devices and systems for fast moving webs or fabrics to detect very precise and reproduce their specified product properties in online operation during production. OPSS-1 OPRL-1 vision control systems are equipped with multiple IR, NIR, VIS monolithic spectral color sensors, precision line lasers, CCD imagine devices, DSP, ATMEL and INFINEON sensor internal controllers, own firmware, high speed data link, at scanning speeds from 20 up to 500mm per second, at web widths up to 5000 mm, measuring gaps from 2.0 up to 5.0 mm, optical inline detection of permeability, porosity, spectral transmission, opacity, extinction, particle absorption, porosities ranges from 80 up to 5,000 C. U. (Coresta), respective from 50 down to 3 Gurley, position control of micro perforation lines with 0.1 mm accuracy, nano micro pores from 50 nm up to 200 micron diameter by up to 300 pores per cm2. With real time data determining of certain parameters, optical transmission, spectral grades, porosity integrals, envelope curves, internal calculated measuring values. Thus direct with close loops and feedbacks to the power electronics of fabrics treatment units. Micro perforation or other system makes it possible to compensate any changes in web treatment parameters and their partial locations so that each jumbo roll as well single, quad bobbin sets can be produced quantity and quality controlled without intermediate stops in order of ISO 90019002 certifications. Thus sophisticate, precise, liable, repeat accuracy, easy visualized, optical online measurement techniques archives perfect ways to control and convert pneumatic, fluid, gas, jet streams, static permeability, naturally porous grades, filtration levels, breathable or ventilation effects, etc. at fast moving webs. Their conditions can be easily met by using optical transmission technology thanks to described processing in fully online stationary or scanning control units, extremely small pore dimensions, high fabric speeds up to 1,000 mmin by high repetition rates. That completely independent from base material properties as consistency, coloring, density, formation, pin holes, smoothness, stretching, shrinking, brightness, opacity, optical spectral property, gauging thickness weight, moisture content and other known influences. The electrostatic nano or micro perforation, including Co2 slab fiber yag excimer diode laser, other material going trough or surface treatment, as well for micromachining and nanotechnology, is usually used depending on quality at fine, rotogravure or offset printing, holographic or publishing paper, writing, magazine, newspaper, packaging, bonded fabrics, non-woven, filter, coffee, tea, bag, sack, craft, food, fresh fruit, force, reinforce, tipping, cigarette, plug wrap, fiber, facial tissues, toilet, decoration, wallpaper, gift, watermark, towels, bleached dyes shiny or clay, recycling, booklet, bible or other special paper, certain plastic films, foils, coating, laminating, extruding, Polyofine, Polysulfone, Elastomer, textile, Polymer or most of that varied types. It is also used especially for additionally treating materials when aiming special characteristics by physical or regular process reasons cannot be achieved by other process technologies. Material base weights from 10 up 150 grams per m2 by thickness from 5 up to 100 micron are possible to use. Including defect inspection, process automation, moisture vapor transmission rate, abrasion resistance for lamination of waterproof and breathable fabrics. Our state-of-the-art, industrially approved, sophisticated, compact, multi functional, optical online sensor scanning systems together or without electrostatic, laser perforation technology operates precise and reliable 247, are integrate able into existing rewinding, slitting, spooling, spreading, printing, labeling, complex production lines or other machines and other production processes as well. Also, they can be used as completely independent micro surface-all-over or zone perforation units. Fully new ranges of applications will be made available total new products with special features. Specific information by website links and patent resources. A German-Thai high-tech, engineering company has developed an optical online porosity or permeability scanning system. It works with two different multiple sensors units, i. e. precise line laser, colour sensors and internal controller unit for real-time positioning and porosity control in light transmission mode whilst scanning across the fast running webs up to 600 mmin. The main advantage compared to existing technologies is the measurement of perforation zoneline positions and porosity levels in the same time while the scanner system across the running material web up to 2,000 mm width. Science, RampD, Universities, industrial partners for a licence agreement and or technical co-operation are sought. The porosity control of natural porous andor perforated web material in laser or electrostatic perforation systems which are produced in speed ranges up to 600 mmin and web widths up to 2,000 mm is difficult to measure with pneumatic systems because of following disadvantages: web tangency, web toughing, material flaking, formation of folds, dust and dirt entering the system. These difficulties can be overcome with stationary or scan, optical porosity measurement systems for porosity ranges from 80 up to 5,000 Coresta units (ml2cm2min) respectively 3 to 50 lm2Sec. (Franksystem) by nano, micro or macro holes sizes from 0.5 up to 500 microns and hole densities from 10 macro holes per cm up to 400 holes per cm2. The optical online porosity control technology is designed to scan perforation zones with a multiple sensor and their positions with a precision line laser to determine all data in real time with an internal controller unit. It controls roll material or bobbin formats, either as a stand-alone unit or mechanically coupled with existing scanning units which measure the material weight, thickness, opacity, density, brightness, smoothness, formation, etc. By laser and electrostatic perforation in bobbins and wide paper web formats optical online control processes and their devices are indicated with transverse movements across the web and simultaneously collections of perforation positions and porosities by two different sensor systems. Both measuring systems move transversely between 50 up 400 mmSecond over the fully web width. They consist of a line laser detect the quality and position of single holes, groups of holes or defined perforation zones into the measuring gap of 5.0mm. At the same time, the multiple light transmission sensors monitor all porosity profiles and determines envelope curve and calculate the integrals. Thus direct feedback into the perforation system makes it possible to compensate any changes in terms of porosity and perforation locations so that each jumbo production roll up to 25,000 meters as well single or quadruple bobbin sets can be produced and controlled without intermediate stops and certificated in quantity und quality on their end. Natural porous or perforated web material as cigarette, tipping, plug-wrap, filter, packaging, non-woven, flees, coated paper as well micro or macro perforated plastic films as BOPP, LDPE, PP, EVA, HDPE, etc. are controllable with the OPSS-1 scanning system. OPSS-1 optical porosity vision control - download OPSS-1 OPSS-1-B print inspection with hi-speed camera scanner for QUAD bobbins at laser perforators - download OPSS-1-B Print inspection ndash tipping paper ndash quad bobbins Patent applied in Germany and P. R. of China tipping paper web speed max. 480 mmin 8.000 mmsec. printed register field across web. X max. 64 mm printed register field down web. Y 25 mm OPSS-1-B scanner speed ndash e. g. A 200 mmsec camera scanner speed ndash e. g. B 600 mmsec. position accuracy of OPSS-1-B scanner. - 50 microm with ASM sensor OPSS-1-B scanning stroke approx. 300 mm local resolution at printed field 100 microm suggested pixel sensor (double pixel calculation) X 2(64 mm0.1mm) 1280 pixel Y 2(25 mm0.1mm) 640 pixel maximal capture rate. cap speedY-field 8.000mmsec25mm 325 capturesec. inspect with step 1 bobbin A. (Deltat0 --- t1)cap 0.32s325captsec. 104 captures while web running inspect with step 2 bobbin C. (Deltat3 --- t2)cap 0.32s325captsec. 104 captures while web running inspect with step 3 bobbin D. (Deltat3 --- t4)cap 0.32s325captsec. 104 captures while web running inspect with step 4 bobbin B. (Deltat1 --- t2)cap 0.32s325captsec. 104 captures while web running (Deltat0 --- t1) (Deltat1 --- t2) (Deltat2 --- t3) (Deltat3 --- t4) full scan OPSS-1-B. 2(sumt1, t2, t3, t4) 12802 2560ms 2.56 sec. by (2.56 sec.8 msec) 20.5 meters printed tipping paper by full scan sum captures. (step1step2step3step4) 4104 captures 404 captures Continuous inspect length by bobbin A, B, C, D: speedinspecting 8.000mmsec0.32sec 2.6 meter Continuous inspect printing length of each bobbin strip. 2.6 meters with 104 captures each of 25 mm single printed fields by 8 msec. speed In-situ dyne and surface tension control at running plastic films or other substrates patent download: microperforationenglishengineerreport. html previous patent application DE19543289 - down load ODSTM-1-PATENT Dynes control Described is a method and device for optical inline tough less surface tension control ODSTM-1 by which the fast moving substrate runs through the measuring gap. Itrsquos transmitted with a chromatic beam and spectral selected light source were two optical channels are displaced and polarized by 90 degree to each other. Both optical axles are precise and motor driven shift able in certain angles from 25 up to 65 degree. The spectral light photons, transmission, extinction, absorption grades are detectable by two optical CCD imagine vision devices which are integrate in the sensor case on the other side of the substrate. Moving substrates means plastic foils, flexible, high-tech films, laminate, coating, bonding, labeling, co-extrusion, BOPP, LDPE, LLDPE, HDPE, MDPE, MAS, MEV, PET, FEP, PP, PE, PS, PO, EVA, PTFE, PVC, PTFE, DPC, BOPS, Vinyl, Polyester, Wrapping, Olefin, self-adhesive tape, high strength, cross-laminated, adhesive-coated films, reflective or magnetic sheeting, automotive tape products, inkjet media, Polyethylenex, heat sealing, sewing of plastic film, pressure sensitive tapes for the entertainment industry, graphic and specialty arts for general industrial and electrical applications, building or engineering industry, photographs, masking or printable plastic films, flat or corrugated rigid foamed thermoplastic sheets, polycarbonate, acrylic, PETG. E xtruded or polished cellulose, optical grade polycarbonate, sheets for IR or laser protection, welding filter grade sheets, films for video, imaging, capacitor or thermo transfer applications, foamed polypropylene film with decorative ribbons, binary-oriented polystyrene sheets, multi layer co-extruded film, high impact PVC and PETG, polyimide film, tape and flat films for aerospace automotive medical agriculture marine automotive household commercial domestic construction industry, municipal and leisure applications, clear matt semi matt finishes or colored, micro porous membranes for use in alkaline lithium batteries, fuel cells and filtration equipment. By gauges from 10 to 100 micron, fabric widths up to 10,000mm and web speeds up to 18 meters per second. Material specific wavelength selection between 1,200 up to 1,800nm, material specific finger prints, molecular spectral properties, transmission grades, optical angle scanning, Lambert Beersche law determining, ultra low level stray scatter light detection, polarization, slot diaphragms, transverse displacements control the light beams alongfar from the optical X and Y axes. The results are extreme scattering, diffraction, NIR, IR, stray light photons generation into the layer areas at both sides of the moving substrate. Their reflected and transmitted light intensities enables the determination by defined formulas and data matrixes the surface tension values in ranges from 28 up to 62 mNm which are direct associate and bond to real static values for Statistical Quality Control (SQC). And this entirely independent of the material specific influences as like surface consistency, thickness, density, weight, opacity, coherence, filling, stretching, shrinkage, structure, co-extrusion, polar grouping, temperature, intrinsic motivation or viscosity, hydrophobia, hydrophilic molecules, hydrogen, photonics, mol mass, moisture, water steam proof, bi-layer, polymer, patterning, nanostructure, irradiation, isotopic, catalyst, multi atomic, coherence, absorption, photo mask effect, roentgen, X-ray, radiation, resonance bands, REM, TEM, FIC, IEC, ESCA electron spectroscopy for chemical analysis ASTM or ATR method, property, ellipsometry, opto-acoustic photonic liquid effects, pre material treatment as corona, plasma, flam treatment. Specific information by website links and patent resources. The former patent application DE19542289 A1 concerns a method and device for optical dynamic, i. e. a non-contact, in-line surface-tension surface-energy measurement for running substrates whereby the detection can be in the transverse-direction or in the running-direction of the web. In the context of this invention, running substrates or moved web material is to be especially understood as being plastic films like PE, PP, LLDPE, HDPE, BOPP, LLDPE, EVOH, PTFE, FEP, MOV, PET, PS, PMMA, PBMA, PVC, PA and also laminated or coated film or paper webs which still show a measurable optical transmission in the wavelength range of 1,200 up to 2,200 nm. A higher material wetting capacity, respectively, a higher material adhesion capacity, which can be achieved by increasing the surface tension, is demanded in many application cases for better printability, coatability or adherence capacity during the manufacture, finishing, printing and processing of running substrate webs. Described is a method and device for optical dynamic in-line surface-tension measurement in ranges from 30 dynes up to 60 dynes in which a substrate web running vertically through a measuring gap is subjected to a chromatic light transmission from two optical channels displaced by 90deg to each other. This light transmission is detectable by two optical detection systems located on the other side of the web. Material specific wavelength selection, light transmission angle changes, polarisation slot diaphragms and transverse displacements of the light beam feeder along the optical X-axis result in extreme scattering and diffraction of the IR light photons in the boundary layer area on both sides of the sub-nano layer within the substrate web. Their transmitted light intensity enables, after detection and evaluation, the determination of a direct relationship to the absolute surface tension. And this entirely independent of the material-specific influences like: material and surface consistency, crystallinity, thickness, density, structure, polar grouping, temperature and type of pre-treatment. Introduction Non-contact, realtime and in-line operation surface-tension or surface-energy dyne - measuring systems for running webs as like plastic films in general, coatings, laminates etc. does not exist world-wide. Due to the broad application field of surface-treated or surface-non-treated webs of plastic film, non-woven fabric, laminates or coated paper, there is unimaginable market potential here in respect of the in-line process measuring of the surface tension - dynes - and an inline control of the dyn treatment level and moderate quality control. Various companies from the abroad are serious interested in project cooperation, system development, prototyping and test, manufacturing and world wide sales, system purchasing and license in respect of the ODSTM-1 Process Measuring System. Actual projects situation of the ODSTM-1 development project Further information concerning publications, patents and engineering reports are specified in the above mentioned applications. Several spectral measurements as well the feasibility study with well known optical institutes are positive done. Furthermore some significant modifications and breakthrough of the base ODSTM-1 measuring process with the using of state-of-the-art monolithic spectrometers and PC support. Specific information about the actual development and project status of the ODSTM-1 system on request. Concerning the actual ODSTM-1 development and project status ndash after a certain developments with known optical institute are large numbers of specific measurements with a monolithic spectrometer in a wave range between 1,200 ndash 1,600 nm positive done all measurements where based on the detection principle which is described in the former patent application. used are non-treated LDPE films in 70 and 90 microns thicknesses and 28 mNm the comparison is used the same LDPE films with one side corona treated with 38, 48, 52 and 60 mNm their test results where positive with a good prospect to going further in that way Base data of Opto Dynamic Surface Tension Measuring system ODSTM-1 middot web widths. up to 6,000mm middot web speeds. up to 600 mmin middot substrates. PE, PP, HDPE, LDPE, PET, EVA, BOPP, etc. middot surface-tension measuring range. 30 - 55 mNm middot resolution, respectively, reproduction. - 0.5 mNm middot single-sided or double-sided measurement of the treated or untreated sides of the film middot IR wavelength range. 1,200 nm up to 1,800 nm middot mode of operation. dual scattered-lightmultiple-sensor system with variable wavelengths in transmission mode middot measuring method. similar to ellipsometry middot measuring gap. approx. 5 up to 20mm middot stationary andor web-traversing measuring head middot optical fibre waveguide feed to measuring head system middot spatially remote, highly-stable IR light source with beam processing middot wavelength variation via a monolithic optical converter middot industrial PC, multiple processor system, data recording, data analysis, product documentation, statistics, etc. middot actual-value output. analogue 0 - 10 Volt via optical fibre or serial RS 232, etc . CONCLUSION Described is a method and device for opto dynamic in-line surface-tension measurement in which a substrate web running vertically through a measuring gap is subjected to a chromatic light transmission from two opto channels displaced by 90deg to each other. This light transmission is detectable by two optical detection systems located on the other side of the web. Material-specific wavelength selection, light transmission angle changes, polarisation slot diaphragms and transverse displacements of the light beam feeder along the optical X-axis result in extreme scattering and diffraction of the IR light photons in the boundary layer area on both sides of the sub-nano layer within the substrate web. Their transmitted light intensity enables, after detection and evaluation, the determination of a direct relationship to the absolute surface tension. And this entirely independent of the material-specific influences like: material and surface consistency, crystallinity, thickness, density, structure, polar grouping, temperature and type of pre-treatment.

No comments:

Post a Comment